In this research article, we present novel extensions of Milne type inequalities to the realm of Riemann-Liouville fractional integrals. Our approach involves exploring significant functional classes, including convex functions, bounded functions, Lipschitzian functions and functions of bounded variation. To accomplish our objective, we begin by establishing a crucial identity for differentiable functions. Leveraging this identity, we subsequently derive new variations of fractional Milne inequalities.
Citation: Hüseyin Budak, Abd-Allah Hyder. Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities[J]. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572
In this research article, we present novel extensions of Milne type inequalities to the realm of Riemann-Liouville fractional integrals. Our approach involves exploring significant functional classes, including convex functions, bounded functions, Lipschitzian functions and functions of bounded variation. To accomplish our objective, we begin by establishing a crucial identity for differentiable functions. Leveraging this identity, we subsequently derive new variations of fractional Milne inequalities.
[1] | S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[2] | P. Cerone, S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, In: G. Anastassiou (Ed.), Handbook of analytic-computational methods in applied mathematics, New York: CRC Press, 2000. |
[3] | M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36 (2013), 5–15. https://doi.org/10.7862/rf.2013.1 doi: 10.7862/rf.2013.1 |
[4] | S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujevac. J. Math., 23 (2001), 25–36. |
[5] | M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54 (2011), 2175–2182. https://doi.org/10.1016/j.mcm.2011.05.026 doi: 10.1016/j.mcm.2011.05.026 |
[6] | M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, F. U. Math. Inform., 29 (2014), 371–384. |
[7] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[8] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4 |
[9] | S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kra. J. Math., 22 (2000), 13–19. |
[10] | M. Z. Sarikaya, A. Saglam, H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Problems Compt. Math., 5 (2012), 1–11. https://doi.org/10.12816/0006114 doi: 10.12816/0006114 |
[11] | M. A. Barakat, A. Hyder, D. Rizk, New fractional results for Langevin equations through extensive fractional operators, AIMS Mathematics, 8 (2023), 6119–6135. https://doi.org/10.3934/math.2023309 doi: 10.3934/math.2023309 |
[12] | M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, B. Korean Math. Soc., 52 (2015), 707–716. https://doi.org/10.4134/BKMS.2015.52.3.707 doi: 10.4134/BKMS.2015.52.3.707 |
[13] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Mis. Math. N., 17 (2016), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197 |
[14] | Y. Zhou, T. Du, The Simpson-type integral inequalities involving twice local fractional differentiable generalized $(s, p)$-convexity and their applications, Fractals, 31 (2023), 2350038. https://doi.org/10.1142/S0218348X2350038X doi: 10.1142/S0218348X2350038X |
[15] | S. I. Butt, A. Khan, New fractal-fractional parametric inequalities with applications, Chaos Solitons Fractals, 172 (2023), 113529. https://doi.org/10.1016/j.chaos.2023.113529 doi: 10.1016/j.chaos.2023.113529 |
[16] | J. Chen, X. Huang, Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C |
[17] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. https://doi.org/10.1155/S102558340000031X doi: 10.1155/S102558340000031X |
[18] | T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045 |
[19] | T. Du, X. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos Solitons Fractals, 170 (2023), 113375. https://doi.org/10.1016/j.chaos.2023.113375 doi: 10.1016/j.chaos.2023.113375 |
[20] | S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859–5883. https://doi.org/10.3934/math.2020375 doi: 10.3934/math.2020375 |
[21] | S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 1–9. https://doi.org/10.1186/s40064-016-1683-x doi: 10.1186/s40064-016-1683-x |
[22] | C. Luo, T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34 (2020), 751–760. https://doi.org/10.2298/FIL2003751L doi: 10.2298/FIL2003751L |
[23] | J. Nasir, S. Qaisar, S. I. Butt, K. A. Khan, R. M. Mabela, Some Simpson's Riemann-Liouville fractional integral inequalities with applications to special functions, J. Funct. Space., 2022 (2022), 2113742. https://doi.org/10.1155/2022/2113742 doi: 10.1155/2022/2113742 |
[24] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2000), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033 |
[25] | E. Set, A. O. Akdemir, M. E. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415–4420. https://doi.org/10.2298/FIL1714415S doi: 10.2298/FIL1714415S |
[26] | E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. https://doi.org/10.1016/j.chaos.2020.110554 doi: 10.1016/j.chaos.2020.110554 |
[27] | Y. Yu, J. Liu, T. Du, Certain error bounds on the parameterized integral inequalities in the sense of fractal sets, Chaos Solitons Fractals, 161 (2022), 112328. https://doi.org/10.1016/j.chaos.2022.112328 doi: 10.1016/j.chaos.2022.112328 |
[28] | X. Yuan, L. E. I. Xu, T. Du, Simpson-like inequalities for twice differentiable $(s, p)$-convex mappings involving with AB-fractional integrals and their applications, Fractals, 31 (2023), 2350024. https://doi.org/10.1142/S0218348X2350024X doi: 10.1142/S0218348X2350024X |
[29] | H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5 |
[30] | P. Bosch, J. M. Rodriguez, J. M. Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., 2023 (2023), 3. https://doi.org/10.1186/s13660-022-02910-0 doi: 10.1186/s13660-022-02910-0 |
[31] | B. Bin-Mohsin, M. Z. Javed, M. U. Awan, A. G. Khan, C. Cesarano, M. A. Noor, Exploration of quantum Milne-Mercer-type inequalities with applications, Symmetry, 15 (2023), 1096. https://doi.org/10.3390/sym15051096 doi: 10.3390/sym15051096 |
[32] | A. D. Booth, Numerical methods, California: Butterworths, 1966. |
[33] | T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846 |
[34] | R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Wien: Springer-Verlag, 1997. |
[35] | A. Hyder, M. A. Barakat, A. H. Soliman, A new class of fractional inequalities through the convexity concept and enlarged Riemann-Liouville integrals, J. Inequal. Appl., 2023 (2023), 137. https://doi.org/10.1186/s13660-023-03044-7 doi: 10.1186/s13660-023-03044-7 |
[36] | A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y |
[37] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[38] | S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[39] | M. Alomari, Z. Liu, New error estimations for the Milne's quadrature formula in terms of at most first derivatives, Kon. J. Math., 1 (2013), 17–23. |