Research article

Extended dissipative analysis for memristive neural networks with two-delay components via a generalized delay-product-type Lyapunov-Krasovskii functional

  • Received: 24 August 2023 Revised: 08 November 2023 Accepted: 09 November 2023 Published: 15 November 2023
  • MSC : 93C10, 93D05, 93D30

  • In this study, we deal with the problem of extended dissipativity analysis for memristive neural networks (MNNs) with two-delay components. The goal is to get less conservative extended dissipativity criteria for delayed MNNs. An improved Lyapunov-Krasovskii functional (LKF) with some generalized delay-product-type terms is constructed based on the dynamic delay interval (DDI) method. Moreover, the derivative of the created LKF is estimated using the integral inequality technique, which includes the information of higher-order time-varying delay. Then, sufficient conditions are attained in terms of linear matrix inequalities (LMIs) to pledge the extended dissipative of MNNs via the new negative definite conditions of matrix-valued cubic polynomials. Finally, a numerical example is shown to prove the value and advantage of the presented approach.

    Citation: Zirui Zhao, Wenjuan Lin. Extended dissipative analysis for memristive neural networks with two-delay components via a generalized delay-product-type Lyapunov-Krasovskii functional[J]. AIMS Mathematics, 2023, 8(12): 30777-30789. doi: 10.3934/math.20231573

    Related Papers:

  • In this study, we deal with the problem of extended dissipativity analysis for memristive neural networks (MNNs) with two-delay components. The goal is to get less conservative extended dissipativity criteria for delayed MNNs. An improved Lyapunov-Krasovskii functional (LKF) with some generalized delay-product-type terms is constructed based on the dynamic delay interval (DDI) method. Moreover, the derivative of the created LKF is estimated using the integral inequality technique, which includes the information of higher-order time-varying delay. Then, sufficient conditions are attained in terms of linear matrix inequalities (LMIs) to pledge the extended dissipative of MNNs via the new negative definite conditions of matrix-valued cubic polynomials. Finally, a numerical example is shown to prove the value and advantage of the presented approach.



    加载中


    [1] L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1998), 1273–1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [2] L. O. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/tct.1971.1083337 doi: 10.1109/tct.1971.1083337
    [3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80. https://doi.org/10.1038/nature08166
    [4] Y. Zhang, X. Wang, E. G. Friedman, Memristor-based circuit design for multilayer neural networks, IEEE Trans. Circuits Syst. I-Regular Papers, 65 (2018), 677–686. https://doi.org/10.1109/TCSI.2017.2729787 doi: 10.1109/TCSI.2017.2729787
    [5] S. Duan, X. Hu, Z. Dong, L. Wang, P. Mazumder, Memristor-based cellular nonlinear/neural network: Design, analysis, and applications, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1202–1213. https://doi.org/10.1109/TNNLS.2014.2334701 doi: 10.1109/TNNLS.2014.2334701
    [6] W. J. Lin, Y. He, C. K. Zhang, L. Wang, M. Wu, Event-triggered fault detection filter design for discrete-time memristive neural networks with time delays, IEEE Trans. Cybern., 52 (2022), 3359–3369. https://doi.org/10.1109/TCYB.2020.3011527 doi: 10.1109/TCYB.2020.3011527
    [7] L. Wang, C. K. Zhang, Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays, IEEE Trans. Neural Netw. Learn. Syst., 2022, 1–14. https://doi.org/10.1109/TNNLS.2022.3176887
    [8] L. Wang, H. B. He, Z. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. https://doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032
    [9] X. Hu, L. Wang, C. K. Zhang, X. Wan, Y. He, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inf. Sci., 66, (2023), 152204. https://doi.org/10.1007/s11432-022-3633-9
    [10] J. Hu, G. Tan, L. Liu, A new result on $H_\infty$ state estimation for delayed neural networks based on an extended reciprocally convex inequality, IEEE Trans. Circuits Syst. II-Express Briefs, 2023. https://doi.org/10.1109/TCSII.2023.3323834
    [11] W. J. Lin, Q. L. Han, X. M. Zhang, J. Yu, Reachable set synthesis of markov jump systems with time-varying delays and mismatched modes, IEEE Trans. Circuits Syst. II-Express Briefs, 69 (2022), 2186–2190. https://doi.org/10.1109/TCSII.2021.3126262 doi: 10.1109/TCSII.2021.3126262
    [12] Y. He, C. K. Zhang, H. B. Zeng, M. Wu, Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay, Int. J. Syst. Sci., 54 (2023), 991–1003. https://doi.org/10.1080/00207721.2022.2157198 doi: 10.1080/00207721.2022.2157198
    [13] C. K. Zhang, W. Chen, C. Zhu, Y. He, M. Wu, Stability analysis of discrete-time systems with time-varying delay via a delay-dependent matrix-separation-based inequality, Automatica, 156 (2023), 111192. https://doi.org/10.1016/j.automatica.2023.111192 doi: 10.1016/j.automatica.2023.111192
    [14] C. Qin, W. J. Lin, Adaptive event-triggered fault-tolerant control for Markov jump nonlinear systems with time-varying delays and multiple faults, Commun. Nonlinear. Sci. Numer. Simul., 128 (2024), 107655. https://doi.org/10.1016/j.cnsns.2023.107655 doi: 10.1016/j.cnsns.2023.107655
    [15] C. Qin, W. J. Lin, J. Yu, Adaptive event-triggered fault detection for Markov jump nonlinear systems with time delays and uncertain parameters, Int. J. Robust Nonlinear Control, 2023. https://doi.org/10.1002/rnc.7062
    [16] C. K. Zhang, K. Xie, Y. He, J. She, M. Wu, Matrix-injection-based transformation method for discrete-time systems with time-varying delay, Sci. China Inf. Sci., 66 (2023), 159201. https://doi.org/10.1007/s11432-020-3221-6 doi: 10.1007/s11432-020-3221-6
    [17] Y. Zhao, H. Gao, S. Mou, Asymptotic stability analysis of neural networks with successive time delay components, Neurocomputing, 71 (2008), 2848–2856. https://doi.org/10.1016/j.neucom.2007.08.015 doi: 10.1016/j.neucom.2007.08.015
    [18] Q. Fu, J. Cai, S. Zhong, Y. Yu, Y. Shan, Input-to-state stability of discrete-time memristive neural networks with two delay components, Neurocomputing, 329 (2019), 1–11. https://doi.org/10.1016/j.neucom.2018.10.017 doi: 10.1016/j.neucom.2018.10.017
    [19] Y. Sheng, T. Huang, Z. Zeng, Exponential stabilization of fuzzy memristive neural networks with multiple time delays via intermittent control, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 3092–3101. https://doi.org/10.1109/TSMC.2021.3062381 doi: 10.1109/TSMC.2021.3062381
    [20] R. Wei, J. Cao, W. Qian, C. Xue, X. Ding, Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method, AIMS Math., 6 (2021), 6915–6932. https://doi.org/10.3934/math.2021405 doi: 10.3934/math.2021405
    [21] W. Zhang, H. Zhang, J. Cao, F. E. Alsaadi, D. Chen, Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays, Neural Netw., 110 (2019), 186–198. https://doi.org/10.1016/j.neunet.2018.12.004 doi: 10.1016/j.neunet.2018.12.004
    [22] Q. Chang, J. H. Park, Y. Yang, The Optimization of control parameters: finite-time bipartite synchronization of memristive neural networks with multiple time delays via saturation function, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 7861–7872. https://doi.org/10.1109/TNNLS.2022.3146832 doi: 10.1109/TNNLS.2022.3146832
    [23] Y. Qian, L. Duan, H. Wei, New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects, AIMS Math., 7 (2022), 16962–16974. https://doi.org/10.3934/math.2022931 doi: 10.3934/math.2022931
    [24] R. Rakkiyappan, A. Chandrasekar, J. Cao, Passivity and passification of memristor-based recurrent neural networks with additive time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2043–2057. https://doi.org/10.1109/TNNLS.2014.2365059 doi: 10.1109/TNNLS.2014.2365059
    [25] J. C. Willems, Dissipative dynamical systems part I: General theory, Arch. Ration. Mech. Anal., 45 (2015), 321–351. https://doi.org/10.1007/bf00276493 doi: 10.1007/bf00276493
    [26] B. Zhang, W. Zheng, S. Xu, Filtering of Markovian jump delay systems based on a new performance index, IEEE Trans. Circuits Syst. I-Regular Papers, 60 (2013), 1250–1263. https://doi.org/10.1109/TCSI.2013.2246213 doi: 10.1109/TCSI.2013.2246213
    [27] C. Lu, X. M. Zhang, Y. He, Extended dissipativity analysis of delayed memristive neural networks based on a parameter-dependent lyapunov functional, In: 2018 Australian & New Zealand Control Conference, 2018,194–198. https://doi.org/10.1109/ANZCC.2018.8606585
    [28] H. Wei, R. Li, C. Chen, Z. Tu, Extended dissipative analysis for memristive neural networks with two additive time-varying delay components, Neurocomputing, 216 (2016), 321–351. https://doi.org/10.1002/rnc.5118 doi: 10.1002/rnc.5118
    [29] T. H. Lee, M. J. Park, J. H. Park, O. M. Kwon, S. M. Lee, Extended dissipative analysis for neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1936–1941. https://doi.org/10.1109/TNNLS.2013.2296514 doi: 10.1109/TNNLS.2013.2296514
    [30] P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst. Eng. Appl. Math., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [31] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [32] A. Seuret, F. Gouaisbaut, Allowable delay sets for the stability analysis of linear time-varying delay systems using a delay-dependent reciprocally convex lemma, IFAC Papersonline, 50 (2017), 1275–1280. https://doi.org/10.1016/j.ifacol.2017.08.131 doi: 10.1016/j.ifacol.2017.08.131
    [33] Z. Zhai, H. Yan, S. Chen, H. Zeng, M. Wang, Improved stability analysis results of generalized neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 9404–9411. https://doi.org/10.1109/TNNLS.2022.3159625 doi: 10.1109/TNNLS.2022.3159625
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(806) PDF downloads(57) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog