Research article

Innovative strategies for Lassa fever epidemic control: a groundbreaking study

  • Received: 02 August 2023 Revised: 21 September 2023 Accepted: 26 September 2023 Published: 15 November 2023
  • MSC : 34D23, 34H05

  • This study aims to develop a mathematical model for analyzing Lassa fever transmission dynamics and proposing effective control measures. The stability of the Lassa fever-free equilibrium point is examined and the model's accuracy is assessed using real-world data. Additionally, the parameter values and the basic reproduction number are estimated. A sensitivity analysis is also conducted, which identifies the key drivers influencing transmission dynamics. Moreover, the impact of model parameters on basic reproduction numbers is investigated. Multiple control methodologies including use of Ribavirin, implementing mobile health technology and incorporating natural predators are devised and analyzed using optimal control theory to curtail virus transmission.

    Citation: Yasir Ramzan, Aziz Ullah Awan, Muhammad Ozair, Takasar Hussain, Rahimah Mahat. Innovative strategies for Lassa fever epidemic control: a groundbreaking study[J]. AIMS Mathematics, 2023, 8(12): 30790-30812. doi: 10.3934/math.20231574

    Related Papers:

  • This study aims to develop a mathematical model for analyzing Lassa fever transmission dynamics and proposing effective control measures. The stability of the Lassa fever-free equilibrium point is examined and the model's accuracy is assessed using real-world data. Additionally, the parameter values and the basic reproduction number are estimated. A sensitivity analysis is also conducted, which identifies the key drivers influencing transmission dynamics. Moreover, the impact of model parameters on basic reproduction numbers is investigated. Multiple control methodologies including use of Ribavirin, implementing mobile health technology and incorporating natural predators are devised and analyzed using optimal control theory to curtail virus transmission.



    加载中


    [1] O. Ogbu, E. Ajuluchukwu, C. Uneke, Lassa fever in west african sub-region: an overview, J. Vector Borne Dis., 44 (2007), 1–11.
    [2] T. Faniran, A mathematical modelling of lassa fever dynamics with non-drug compliance rate, IJMTT, 47 (2017), 305–317. http://dx.doi.org/10.14445/22315373/IJMTT-V47P542 doi: 10.14445/22315373/IJMTT-V47P542
    [3] M. Akinade, A. Afolabi, M. Kimathi, Mathematical modeling and stability analyses of lassa fever disease with the introduction of the carrier compartment, Mathematical Theory and Modeling, 9 (2019), 45–62. http://dx.doi.org/10.7176/MTM/9-6-04 doi: 10.7176/MTM/9-6-04
    [4] D. Greenky, B. Knust, E. Dziuban, What pediatricians should know about lassa virus, JAMA Pediatr., 172 (2018), 407–408. http://dx.doi.org/10.1001/jamapediatrics.2017.5223 doi: 10.1001/jamapediatrics.2017.5223
    [5] M. Ojo, T. Benson, A. Shittu, E. Doungmo Goufo, Optimal control and cost-effectiveness analysis for the dynamic modeling of lassa fever, J. Math. Comput. Sci., 12 (2022), 136. http://dx.doi.org/10.28919/jmcs/7279 doi: 10.28919/jmcs/7279
    [6] CDC, Lassa fever, Centers for Disease Control and Prevention, 2022. Available from: https://www.cdc.gov/vhf/lassa/index.html.
    [7] C. Madubueze, Z. Chazuka, An optimal control model for the transmission dynamics of lassa fever, Preprint, 2022. http://dx.doi.org/10.21203/rs.3.rs-1513399/v1
    [8] L. Mazzola, C. Kelly-Cirino, Diagnostics for Lassa fever virus: a genetically diverse pathogen found in low-resource settings, BMJ Glob. Health, 4 (2019), e001116. http://dx.doi.org/10.1136/bmjgh-2018-001116 doi: 10.1136/bmjgh-2018-001116
    [9] WHO, Lassa fever, World Health Organization Newsroom, 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/lassa-fever#: : text = Sexual
    [10] J. Davies, K. Lokuge, K. Glass, Routine and pulse vaccination for Lassa virus could reduce high levels of endemic disease: a mathematical modelling study, Vaccine, 37 (2019), 3451–3456. http://dx.doi.org/10.1016/j.vaccine.2019.05.010 doi: 10.1016/j.vaccine.2019.05.010
    [11] S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, D. He, Mechanistic modelling of the large-scale lassa fever epidemics in nigeria from 2016 to 2019, J. Theor. Biol., 493 (2020), 110209. http://dx.doi.org/10.1016/j.jtbi.2020.110209 doi: 10.1016/j.jtbi.2020.110209
    [12] T. Hussain, M. Ozair, F. Ali, S. ur Rehman, T. Assiri, E. Mahmoud, Sensitivity analysis and optimal control of COVID-19 dynamics based on seiqr model, Results Phys., 22 (2021), 103956. http://dx.doi.org/10.1016/j.rinp.2021.103956 doi: 10.1016/j.rinp.2021.103956
    [13] T. Hussain, M. Ozair, A. Komal, A. Awan, B. Alshahrani, S. Abdelwahab, et al., Theoretical assessment of cholera disease and its control measures, Chaos Soliton. Fract., 153 (2021), 111528. http://dx.doi.org/10.1016/j.chaos.2021.111528 doi: 10.1016/j.chaos.2021.111528
    [14] A. Aslam, M. Ozair, T. Hussain, A. Awan, F. Tasneem, N. Shah, Transmission and epidemiological trends of pine wilt disease: Findings from sensitivity to optimality, Results Phys., 26 (2021), 104443. http://dx.doi.org/10.1016/j.rinp.2021.104443 doi: 10.1016/j.rinp.2021.104443
    [15] Y. Guo, T. Li, Modeling the competitive transmission of the omicron strain and delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. http://dx.doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [16] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825. http://dx.doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [17] Y. Guo, T. Li, Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in china, J. Appl. Math. Comput., 68 (2022), 2641–2666. http://dx.doi.org/10.1007/s12190-021-01611-z doi: 10.1007/s12190-021-01611-z
    [18] Y. Guo, T. Li, Dynamics and optimal control of an online game addiction model with considering family education, AIMS Mathematics, 7 (2022), 3745–3770. http://dx.doi.org/10.3934/math.2022208 doi: 10.3934/math.2022208
    [19] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci., 121 (2023), 107221. http://dx.doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [20] M. Ibrahim, A. Dénes, A mathematical model for lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in nigeria, Nonlinear Anal.-Real, 60 (2021), 103310. http://dx.doi.org/j.nonrwa.2021.103310
    [21] E. Bakare, E. Are, O. Abolarin, S. Osanyinlusi, B. Ngwu, O. Ubaka, Mathematical modelling and analysis of transmission dynamics of lassa fever, J. Appl. Math., 2020 (2020), 6131708. http://dx.doi.org/10.1155/2020/6131708 doi: 10.1155/2020/6131708
    [22] O. Peter, A. Abioye, F. Oguntolu, T. Owolabi, M. Ajisope, A. Zakari, et al., Modelling and optimal control analysis of lassa fever disease, Informatics in Medicine Unlocked, 20 (2020), 100419. http://dx.doi.org/10.1016/j.imu.2020.100419 doi: 10.1016/j.imu.2020.100419
    [23] I. Onah, O. Collins, P. Madueme, G. Mbah, Dynamical system analysis and optimal control measures of lassa fever disease model, International Journal of Mathematics and Mathematical Sciences, 2020 (2020), 7923125. http://dx.doi.org/10.1155/2020/7923125 doi: 10.1155/2020/7923125
    [24] M. Onuorah, S. Ojo, J. Usman, A. Ademu, Basic reproductive number for the spread and control of lassa fever, IJMTT, 30 (2016), 1–7. http://dx.doi.org/10.14445/22315373/IJMTT-V30P501 doi: 10.14445/22315373/IJMTT-V30P501
    [25] X. Liao, L. Wang, P. Yu, Stability of dynamical systems, Amsterdam: Elsevier, 2007.
    [26] J. La Salle, S. Lefschetz, Stability by Liapunov's direct method with applications, New York: Elsevier, 2012.
    [27] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [28] O. Collins, K. Govinder, Stability analysis and optimal vaccination of a waterborne disease model with multiple water sources, Nat. Resour. Model., 29 (2016), 426–447. http://dx.doi.org/10.1111/nrm.12095 doi: 10.1111/nrm.12095
    [29] C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. Yakubu, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory, New York: Springer Science & Business Media, 2002. http://dx.doi.org/10.1007/978-1-4613-0065-6
    [30] NCDC, National disease outbreak dashboard 2006–2021 (all diseases), Nigeria Centre for Disease Control and Prevention. Available from: https://ncdc.gov.ng/data.
    [31] Data Commons, Average life expectancy of Nigeria in 2020, Google, Available from: https://www.datacommons.org/tools/timeline#place = country
    [32] M. Ojo, E. Goufo, Modeling, analyzing and simulating the dynamics of lassa fever in nigeria, J. Egypt. Math. Soc., 30 (2022), 1. http://dx.doi.org/10.1186/s42787-022-00138-x doi: 10.1186/s42787-022-00138-x
    [33] M. Ojo, B. Gbadamosi, O. Adebimpe, R. Ogundokun, Sensitivity analysis of dengue model with saturated incidence rate, Biomath Communications Supplement, 5 (2018), 1–17. http://dx.doi.org/10.4236/oalib.1104413 doi: 10.4236/oalib.1104413
    [34] M. Ojo, F. Akinpelu, Sensitivity analysis of ebola virus model, Asian Research Journal of Mathematics, 2 (2017), 1–10. http://dx.doi.org/10.9734/ARJOM/2017/31201 doi: 10.9734/ARJOM/2017/31201
    [35] L. Pontryagin, Mathematical theory of optimal processes, London: Routledge, 1987. http://dx.doi.org/10.1201/9780203749319
    [36] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, New York: Springer Science & Business Media, 2012. http://dx.doi.org/10.1007/978-1-4612-6380-7
    [37] O. Adepoju, S. Olaniyi, Stability and optimal control of a disease model with vertical transmission and saturated incidence, Scientific African, 12 (2021), e00800. http://dx.doi.org/10.1016/j.sciaf.2021.e00800 doi: 10.1016/j.sciaf.2021.e00800
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(67) Cited by(4)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog