In this study, we develop various features in special polynomials using the principle of monomiality, operational formalism, and other qualities. By utilizing the monomiality principle, new outcomes can be achieved while staying consistent with past knowledge. Furthermore, an explicit form satisfied by these polynomials is also derived. The emphasis of this study is to introduce the degenerate multidimensional Hermite polynomials (DMVHP) denoted as $ \mathbb{H}^{[r]}_n(j_1, j_2, j_3, \cdots, j_r; \vartheta) $, which are closely related to the classical Hermite polynomials and are a significant class of orthogonal polynomials. The fundamental properties, such as symmetric identities for these polynomials are also established. An operational framework is also established for these polynomials.
Citation: Mohra Zayed, Shahid Wani. Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials[J]. AIMS Mathematics, 2023, 8(12): 30813-30826. doi: 10.3934/math.20231575
In this study, we develop various features in special polynomials using the principle of monomiality, operational formalism, and other qualities. By utilizing the monomiality principle, new outcomes can be achieved while staying consistent with past knowledge. Furthermore, an explicit form satisfied by these polynomials is also derived. The emphasis of this study is to introduce the degenerate multidimensional Hermite polynomials (DMVHP) denoted as $ \mathbb{H}^{[r]}_n(j_1, j_2, j_3, \cdots, j_r; \vartheta) $, which are closely related to the classical Hermite polynomials and are a significant class of orthogonal polynomials. The fundamental properties, such as symmetric identities for these polynomials are also established. An operational framework is also established for these polynomials.
[1] | C. Hermite, Sur un nouveau dévelopment en séries de functions, Compt. Rend. Acad. Sci. Paris, 58 (1864), 93–100. |
[2] | D. Xiu, Hermite Polynomial Based Expansion of European Option Prices, J. Econ., 79 (2014), 158–177. http://doi.org/10.1016/j.jeconom.2014.01.003 doi: 10.1016/j.jeconom.2014.01.003 |
[3] | A. Kumari, V. K. Kukreja, Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations, Mathematics, 11 (2023), 3157. http://doi.org/10.3390/math11143157 doi: 10.3390/math11143157 |
[4] | B. Podolsky, L. Pauling, The momentum distribution in hydrogen-like atoms, Phys. Rev., 34 (1929), 109. http://doi.org/10.1103/PhysRev.34.109 doi: 10.1103/PhysRev.34.109 |
[5] | S. Makram-Ebeid, B. Mory, Scale-Space Image Analysis Based on Hermite Polynomials Theory, Int. J. Comput. Vision, 64 (2005), 125–141. http://doi.org/10.1007/s11263-005-1839-6 doi: 10.1007/s11263-005-1839-6 |
[6] | H. Zakrajsek, Applications of Hermite transforms in computer algebra, Adv. Appl. Math., 31(2003), 301–320. http://doi.org/10.1016/S0196-8858(03)00013-7 doi: 10.1016/S0196-8858(03)00013-7 |
[7] | C. S. Ryoo, Notes on degenerate tangent polynomials, Glob. J. Pure Appl. Math., 11 (2015), 3631–3637. |
[8] | K. W. Hwang, C. S. Ryoo, Differential equations associated with two variable degenerate Hermite polynomials, Mathematics, 8 (2020), 228. http://doi.org/10.3390/math8020228 doi: 10.3390/math8020228 |
[9] | K. W. Hwang, Y. Seol, C. S. Ryoo, Explicit Identities for 3-Variable Degenerate Hermite Kampé de Fériet Polynomials and Differential Equation Derived from Generating Function, Symmetry, 13 (2021), 7. http://doi.org/10.3390/sym13010007 doi: 10.3390/sym13010007 |
[10] | T. A. Kim, Note on the Degenerate Type of Complex Appell Polynomials, Symmetry, 11 (2019), 1339. https://doi.org/10.3390/sym11111339 doi: 10.3390/sym11111339 |
[11] | T. Kim, Y. Yao, D. S. Kim, G. W. Jang, Degenerate r-Stirling numbers and r-Bell polynomials, Russ. J. Math. Phys., 25 (2018), 44–58. http://doi.org/10.1134/S1061920818010041 doi: 10.1134/S1061920818010041 |
[12] | D. S. Kim, T. Kim, H. Lee, A note on degenerate Euler and Bernoulli polynomials of complex variable, Symmetry, 11 (2019), 1168. http://doi.org/10.3390/sym11091168 doi: 10.3390/sym11091168 |
[13] | S. A. Wani, S. Khan, S. Naikoo, Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials, Bol. Soc. Mat. Mex., 26 (2019), 617–646. http://doi.org/10.1007/s40590-019-00239-1 doi: 10.1007/s40590-019-00239-1 |
[14] | S. Khan, S. A. Wani, Fractional calculus and generalized forms of special polynomials associated with Appell sequences, Georgian Math. J., 28 (2019), 261–270. http://doi.org/10.1515/gmj-2019-2028 doi: 10.1515/gmj-2019-2028 |
[15] | S. Khan, S. A. Wani, Extended Laguerre-Appell polynomials via fractional operators and their determinant forms, Turkish J. Math., 42 (2018), 1686–1697. http://doi.org/10.3906/mat-1710-55 doi: 10.3906/mat-1710-55 |
[16] | S. A. Wani, K. S. Nisar, Quasi-monomiality and convergence theorem for Boas-Buck-Sheffer polynomials, Mathematics, 5 (2020), 4432–4453. http://doi.org/10.3934/math.2020283 doi: 10.3934/math.2020283 |
[17] | W. A. Khan, A. Muhyi, R. Ali, K. A. H. Alzobydi, M. Singh, P. Agarwal, A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties, AIMS Mathematics, 6 (2021), 12680–12697. http://doi.org/10.3934/math.2021731 doi: 10.3934/math.2021731 |
[18] | G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. http://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1 |
[19] | J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366. http://doi.org/10.1007/BF02392231 doi: 10.1007/BF02392231 |
[20] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Advanced Special Functions and Applications, 2000,147–164. |
[21] | G. Dattoli, P. E. Ricci, C. Cesarano, L. Vázquez, Special polynomials and fractional calculas, Math. Comput. Modell., 37 (2003), 729–733. http://doi.org/10.1016/S0895-7177(03)00080-3 doi: 10.1016/S0895-7177(03)00080-3 |
[22] | Z. X. Yeap, K. S. Sim, C. P. Tso, Adaptive tuning piecewise cubic Hermite interpolation with Wiener filter in wavelet domain for scanning electron microscope images, MRT, 82 (2019), 402–414. http://doi.org/10.1002/jemt.23181 doi: 10.1002/jemt.23181 |
[23] | S. Arora, I. Kaur, An efficient scheme for numerical solution of Burgers' equation using quintic Hermite interpolating polynomials, Arab. J. Math., 5 (2016), 23–34. http://doi.org/10.1007/s40065-015-0137-6 doi: 10.1007/s40065-015-0137-6 |
[24] | D. N. Xu, Z. Y. Li, Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays, AIMS Mathematics, 8 (2023), 1610–1619. http://doi.org/10.3934/math.2023081 doi: 10.3934/math.2023081 |
[25] | Y. Zhang, Z. Li, W. Jiang, W. Liu, The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays, AIMS Mathematics, 8 (2023), 6176–6190. http://doi.org/10.3934/math.2023312 doi: 10.3934/math.2023312 |
[26] | A. Hoshi, H. Hidetaka Kitayama, Three-dimensional purely quasimonomial actions, Kyoto J. Math., 60 (2020), 335–377. http://doi.org/10.1215/21562261-2019-0008 doi: 10.1215/21562261-2019-0008 |
[27] | Y. B. Cheikh, Some results on quasi-monomiality, Appl. Math. Comput., 141 (2003), 63–76. http://doi.org/10.1016/S0096-3003(02)00321-1 doi: 10.1016/S0096-3003(02)00321-1 |
[28] | S. Khan, M. Ali, A Note on the Harmonic Oscillator Group, Quasi-Monomiality and Endomorphisms Of the Vector Spaces, Rep. Math. Phys., 81 (2018), 147–155. http://doi.org/10.1016/S0034-4877(18)30032-6 doi: 10.1016/S0034-4877(18)30032-6 |
[29] | S. Khan, M. Riyasat, S. A. Wani, On some classes of differential equations and associated integral equations for the Laguerre–Appell polynomials, Adv. Pure Appl. Math., 9(2017), 185–194. http://doi.org/10.1515/apam-2017-0079 doi: 10.1515/apam-2017-0079 |
[30] | S. Khan, M. Riyasat, S. A. Wani, Differential and integral equations associated with some hybrid families of Legendre polynomials, Tbilisi Math. J., 11 (2018), 127–139. http://doi.org/10.32513/tbilisi/1524276035 doi: 10.32513/tbilisi/1524276035 |