Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus

  • Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.

    In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order r as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order r, the degenerate Euler polynomials and numbers of order r, the degenerate Daehee polynomials of order r, the degenerate Bell polynomials, and so on.

    Citation: Hye Kyung Kim, Dmitry V. Dolgy. Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus[J]. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213

    Related Papers:

    [1] Taekyun Kim, Dae San Kim, Hye Kyung Kim . Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 2022, 7(9): 17357-17368. doi: 10.3934/math.2022956
    [2] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [3] Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate $ r $-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322
    [4] Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380
    [5] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221
    [6] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [7] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [8] Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148
    [9] Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298
    [10] Feng Qi, Da-Wei Niu, Bai-Ni Guo . Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170
  • Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.

    In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order r as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order r, the degenerate Euler polynomials and numbers of order r, the degenerate Daehee polynomials of order r, the degenerate Bell polynomials, and so on.



    In combinatorics, the Catalan numbers are the numbers of Dyck words of length 2n or the numbers of different ways n+1 factors completely parenthesized or the numbers of non-isomorphic ordered trees with n+1 vertices or the numbers of monotonic lattice paths along the edges of a grid with n×n square cells, which do not pass above the diagonal or the numbers of noncrossing partitions of the set {1,...,n} and arise in many other counting problems with real-world applications [3,5,7,24,28]. The Catalan-Daehee numbers are defined by assigning 14t1 instead of t in the definition of Daehee numbers which play important role in connecting relationship between special numbers [10,16]. Moreover, the generating function of Catalan numbers can be represented by the fermionic p-adic integral on Zp of (14t)x2 and the generating function of Catalan-Daehee numbers can be represented by the p-adic Volkenborn integral on Zp of the same function (14t)x2 [16,17]. Various identities of Catalan-Daehee polynomials have been studied in [5,16,17,29].

    Many scholars in the field of mathematics have worked on degenerate versions of special polynomials and numbers which include the degenerate Stirling numbers of the first and second kinds, the degenerate Bernstein polynomials, the degenerate Bell numbers and polynomials, the degenerate gamma function, the degenerate gamma random variables, and so on [1,2,10,11,12,13,14,15,19,20,30,31]. We can find the motivation to study degenerate polynomials and numbers in the following real-world examples. Suppose the probability of a baseball player getting a hit in a match is p. We wonder if the probability that the player will succeed in the 11th trial after failing 9 times in 10 trials is still p. We can see cases where the probability is less than p because of the psychological burden that the player must succeed in the 11th trial [31].

    In the 1970s, Rota and his collaborators [22,23,24] began to construct a rigorous foundation for the classical umbral calculus, which consisted of a symbolic technique for the manipulation of numerical and polynomial sequences. The umbral calculus has received much attention from researchers because of its numerous applications in many fields of mathematics, physics, chemistry, and engineering [4,6,9,11,13,15,16,20,21,22,23,24,25,26,28]. For instance, the connection between Sheffer polynomials and Riordan array and the isomorphism between the Sheffer groups and the Riordan Groups are proved [25,26]. Recently, Kim-Kim [11] introduced the λ-Sheffer sequences and the degenerate Sheffer sequences by substituting λ-linear functionals and λ-differential operators, respectively, instead of linear functionals and differential operators.

    With these points in mind, in this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and degenerate Catalan-Daehee polynomials of order r(1) as one of the generalizations of the degenerate Catalan-Daehee polynomials. It is difficult to study identities related to degenerate Catalan-Daehee polynomials and special polynomials using the p-adic integral on Zp or other properties. Thus, we explore various interesting identities related to the degenerate Catalan-Daehee polynomials of order r and special polynomials and numbers by using degenerate Sheffer sequences. At the same time we derive the inversion formulas of these identities. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the falling factorials, the degenerate Bernoulli polynomials and numbers of order r, the degenerate Euler polynomials and numbers of order r, the degenerate Daehee polynomials of order r, the degenerate Bell polynomials, etc.

    Now, we give some definitions and properties needed in this paper.

    For any nonzero λR, the degenerate exponential function is defined by

    exλ(t)=(1+λt)xλ,eλ(t)=(1+λt)1λ,  (|xλ|1)(see[1017]). (1.1)

    By Taylor expansion, we get

    exλ(t)=n=0(x)n,λtnn!,(see [1017]), (1.2)

    where (x)0,λ=1, (x)n,λ=x(xλ)(x2λ)(x(n1)λ), (n1).

    The degenerate Bernoulli polynomials and degenerate Euler polynomials of order r, respectively, are given by the generating function

    (teλ(t)1)rexλ(t)=n=0B(r)n,λ(x)tnn!, (see [1,1113]), (1.3)

    and

    (2eλ(t)+1)rexλ(t)=n=0E(r)n,λ(x)tnn!,(see[1,11,13]). (1.4)

    We note that B(r)n,λ=B(r)n,λ(0) and E(r)n,λ=E(r)n,λ(0) (n0), which are called the degenerate Bernoulli and degenerate Euler numbers of order r, respectively.

    The degenerate Bernoulli polynomials of the second kind of order r are defined by the generating function

    (tlogλ(1+t))r(1+t)x=n=0b(r)n,λ(x)tnn!,(see [8,11]). (1.5)

    When x=0, b(r)n,λ=b(r)n,λ(0), which are called the degenerate Bernoulli numbers of the second kind of order r.

    The degenerate Daehee polynomials of order r are defined by the generating function

    (logλ(1+t)t)r(1+t)x=n=0D(r)n,λ(x)tnn!,(see [6,11]), (1.6)

    where logλ(1+t)=1λ((1+t)λ1) and logλ(eλ(t))=eλ(logλ(t))=t.

    When x=0, D(r)n,λ=D(r)n,λ(0), which are called the degenerate Daehee numbers of order r.

    The Bell polynomials are defined by the generating function

    ex(et1)=n=0Beln(x)tnn!,(see  [3,15,19,20]).

    Kim-Kim introduced the degenerate Bell polynomials given by the generating function

    exλ(eλ(t)1)=l=0Bell,λ(x)tll!,(see  [13]). (1.7)

    When x=1, Bel(r)n,λ=Bel(r)n,λ(1) are called the degenerate Bell numbers.

    For n0, it is well known that the Stirling numbers of the first and second kind, respectively are given by

    (x)n=nl=0S1(n,l)xl  and  1k!(log(1+t))k=n=kS1(n,k)tnn!,(see  [1,14]),

    and

    xn=nl=0S2(n,l)(x)l  and  1k!(et1)k=n=kS2(n,k)tnn!,(see  [1,14]),

    where (x)0=1,(x)n=x(x1)(xn+1), (n1).

    Moreover, the degenerate Stirling numbers of the first and second kind, respectively are given by

    (x)n=nl=0S1,λ(n,l)(x)l,λ  and 1k!(logλ(1+t))k=n=kS1,λ(n,k)tnn!,(k0),(see  [12,14]), (1.8)

    and

    (x)n,λ=nl=0S2,λ(n,l)(x)l  and 1k!(eλ(t)1)k=n=kS2,λ(n,k)tnn!,(k0),(see  [12,14]). (1.9)

    For k0, as an extension of the notion of the degenerate Stirling numbers of the second kind, Kim et al. introduced Jindalrae-Stirling numbers of the second kind by

    1k!(eλ(eλ(t)1)1)k=n=kS(2)j,λ(n,k)tnn!,(see  [18]). (1.10)

    From (1.9) and (1.10), we note that

    S(2)j,λ(n,k)=nm=kS2,λ(n,m)S2,λ(m,k). (1.11)

    Let C be the complex number field and let F be the set of all power series in the variable t over C with

    F={f(t)=k=0aktkk! | akC}.

    Let P=C[x] and P be the vector space all linear functional on P:

    Pn={ P(x)C[x] | degP(x)n},  (n0).

    Then Pn is an (n+1)-dimensional vector space over C.

    Recently, Kim-Kim [11] considered λ-linear functional and λ-differential operator as follows:

    For f(t)=k=0aktkk!F and a fixed nonzero real number λ, each λ gives rise to the linear functional f(t)|λ on P, called λ-linear functional given by f(t), which is defined by

    f(t)|(x)n,λλ=an,forall n0,(see  [11]). (1.12)

    In particular tk|(x)n,λλ=n!δn,k, for all n,k0, where δn,k is the Kronecker's symbol.

    For λ=0, we observe that the linear functional f(t)|0 agrees with the one in f(t)|xn=ak, (k0).

    For each λR and each nonnegative integer k, they also defined the differential operator on P by

    (tk)λ(x)n,λ={(n)k(x)nk,λ,    if   kn,0if   kn,(see[11]). (1.13)

    and for any power series f(t)=k=0aktkk!F, (f(t))λ(x)n,λ=nk=0(nk)ak(x)nk,λ,   (n0).

    The order o(f(t)) of a power series f(t)(0) is the smallest integer k for which the coefficient of tk does not vanish. The series f(t) is called invertible if o(f(t))=0 and such series has a multiplicative inverse 1/f(t) of f(t). f(t) is called a delta series if o(f(t))=1 and it has a compositional inverse ¯f(t) of f(t) with ¯f(f(t))=f(¯f(t))=t.

    Let f(t) and g(t) be a delta series and an invertible series, respectively. Then there exists a unique sequence sn,λ(x) such that the orthogonality condition holds

    g(t)(f(t))k|sn,λ(x)λ=n!δn,k,(n,k0),(see  [11]). (1.14)

    The sequence sn,λ(x) is called the λ-Sheffer sequence for (g(t),f(t)), which is denoted by sn,λ(x)(g(t),f(t))λ.

    The sequence sn,λ(x)  (g(t),f(t))λ if and only if

    1g(¯f(t))exλ(¯f(t)) = k=0sk,λ(x)k!tk,(n,k0),(see  [11]). (1.15)

    Assume that for each λR of the set of nonzero real numbers, sn,λ(x) is λ-Sheffer for (gλ(t),fλ(t)). Assume also that lim and \lim_{\lambda\rightarrow 0}g_\lambda(t) = g(t) , for some delta series f(t) and an invertible series g(t) . Then \lim_{\lambda\rightarrow 0}\overline{f}_\lambda(t) = \overline{f}(t) , where is the compositional inverse of f(t) with \overline{f}(f(t)) = f(\overline{f}(t)) = t . Let \lim_{\lambda\rightarrow 0} s_{k, \lambda}(x) = s_{k}(x) . In this case, Kim-Kim called that the family \{s_{n, \lambda}(x)\}_{\lambda \in \mathcal{R}-\{0\}} of \lambda -Sheffer sequences s_{n, \lambda} is the degenerate (Sheffer) sequences for the Sheffer polynomial s_n(x) .

    Let s_{n, \lambda}(x) \sim (g(t), f(t))_\lambda and r_{n, \lambda}(x)\sim (h(t), g(t))_\lambda , (n\ge 0) . Then

    \begin{equation} \begin{split} s_{n, \lambda}(x)& = \sum\limits_{k = 0}^{n}z_{n, k} r_{k, \lambda}(x), \quad(n\ge 0), \\ &\ \ {\rm where} \ \ \ z_{n, k} = \frac{1}{k!}\bigg\langle \frac{h(\overline{f}(t))}{g(\overline{f}(t))}\big(l(\overline{f}(t))\big)^{k}\; |\; (x)_{n, \lambda}\bigg\rangle_\lambda, \quad(n, k\ge 0), \; \; \quad {\rm{(see\ \ [11])}}. \end{split} \end{equation} (1.16)

    In this section, we define the degenerate Catalan-Daehee polynomials of order r , and derive several identities between the degenerate Catalan-Daehee polynomials of order r and some other polynomials arising from degenerate Sheffer sequences.

    As is known, the Catalan numbers C_{n} are given by the generating function

    \begin{equation*} \frac{1-\sqrt{1-4t}}{2t} = \frac{2}{1+\sqrt{1-4t}} = \sum\limits_{n = 0}^{\infty}C_{n}t^n, \; \; \quad {\rm{(see\ \ [5, 16, 17])}}. \end{equation*}

    The Catalan numbers C_{n}^{(r)} of order r , as a generalization of Catalan numbers, are given by the generating function

    \begin{equation*} \bigg(\frac{1-\sqrt{1-4t}}{2t}\bigg)^r = \bigg(\frac{2}{1+\sqrt{1-4t}}\bigg)^r = \sum\limits_{n = 0}^{\infty}C_{n}^{(r)} t^n, \; \; \quad {\rm{(see\ \ [16, 17])}}. \end{equation*}

    Kim-Kim introduced the Catalan-Daehee polynomials which are given by the generating function

    \begin{equation} \frac{\frac{1}{2}log(1-4t)}{\sqrt{1-4t}-1} (1-4t)^{\frac{x}{2}} = \sum\limits_{n = 0}^{\infty} \mathfrak{C}_{n}(x) t^n = \sum\limits_{n = 0}^{\infty}n! \mathfrak{C}_{n}(x) \frac{t^n}{n!}, \; \; \quad {\rm{(see\ \ [16, 17])}}. \end{equation} (2.1)

    When x = 0 , \mathfrak{C}_n : = \mathfrak{C}_n (0) , which are called Catalan-Daehee numbers.

    From (1.6) and (2.1), we note that

    \begin{equation*} \sum\limits_{n = 0}^{\infty}\mathfrak{C}_n (x)t^n = \frac{\frac{1}{2}\log(1-4t)}{\sqrt{1-4t}-1} (1-4t)^{\frac{x}{2}} = \sum\limits_{n = 0}^{\infty}n! D_{n, \frac{1}{2}}(\frac{x}{2})(-4)^n \frac{t^n}{n!}. \end{equation*}

    We introduce the degenerate Catalan-Daehee polynomials \mathfrak{C}_{n, \lambda}(x) which are given by the generating function

    \begin{equation} \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg) e_{\lambda}^x \big(\frac{1}{2}\log_{\lambda} (1-4t)\big) = \sum\limits_{n = 0}^{\infty} n! \mathfrak{C}_{n, \lambda}(x) \frac{t^n}{n!}. \end{equation} (2.2)

    When x = 0 , \mathfrak{C}_{n, \lambda} : = \mathfrak{C}_{n, \lambda} (0) , which are called degenerate Catalan Daehee numbers.

    When \lambda\rightarrow 0 , we note that \mathfrak{C}_{n, \lambda}(x) = \mathfrak{C}_{n}(x) .

    As a generalization of the degenerate Catalan-Daehee polynomials, we also introduce degenerate Catalan-Daehee polynomials \mathfrak{C}_{n, \lambda}^{(r)}(x) of order r are given by the generating function

    \begin{equation} \bigg(\frac{\frac{1}{2}\log_\lambda (1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r e_{\lambda}^x \big(\frac{1}{2}\log_{\lambda} (1-4t)\big) = \sum\limits_{n = 0}^{\infty} n! \mathfrak{C}^{(r)}_{n, \lambda}(x) \frac{t^n}{n!}. \end{equation} (2.3)

    When x = 0 , \mathfrak{C}^{(r)}_{n, \lambda} : = \mathfrak{C}^{(r)}_{n, \lambda} (0) , which are called degenerate Catalan Daehee numbers of order r .

    It easy to see that the compositional inverse of f(t) = \frac{1}{4}(1-e_\lambda(2t)) such that f(\overline{f}(t)) = \overline{f}(f(t)) = t is

    \begin{equation} \overline{f}(t) = \frac{1}{2}\log_{\lambda}(1-4t). \end{equation} (2.4)

    From(1.15), (2.2), (2.3) and (2.4) we have

    \begin{equation} n! \mathfrak{C}_{n, \lambda}(x) \sim \bigg(\frac{e_\lambda(t)-1}{t}, \frac{1}{4}(1-e_\lambda(2t))\bigg)_\lambda, \end{equation} (2.5)

    and

    \begin{equation} n!\mathfrak{C}^{(r)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t) -1}{t}\bigg)^r , \frac{1}{4}(1-e_{\lambda}(2t)\bigg)_{\lambda}. \end{equation} (2.6)

    Theorem 1. For n \in \mathbb{N}\cup \{0\} , we have

    \begin{equation*} \mathfrak{C}^{(r)}_{n, \lambda}(x) = \frac{1}{n!}\sum\limits_{k = 0}^{n} \bigg(\binom{n}{m} (-1)^m 2^{2m-k}S_{1, \lambda}(m, k)(n-m)!\mathfrak{C}_{n-m, \lambda}^{(r)}\bigg)(x)_{k, \lambda}. \end{equation*}

    Proof. From (1.2), (1.15) and (2.6), we consider the following two Sheffer sequence as follows:

    \begin{equation} \begin{split} n! \mathfrak{C}_{n, \lambda}^{(r)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ (x)_{n, \lambda} \sim \big(1, \; t\big)_\lambda. \end{split} \end{equation} (2.7)

    From (1.16) and (2.7), we have

    \begin{equation} \begin{split} n!\mathfrak{C}_{n, \lambda}^{(r)}(x) = \sum\limits_{k = 0}^n z_{n, k} (1)_{k, \lambda}. \end{split} \end{equation} (2.8)

    From (1.8) and (2.3), we obtain

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r \big(\frac{1}{2}\log_{\lambda} (1-4t)\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^k} \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r \; \bigg| \bigg(\frac{\log_{\lambda} (1+(-4t))^k}{k!} \bigg)_\lambda (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^k}\sum\limits_{m = k}^{n} \binom{n}{m}(-4)^m S_{1, \lambda}(m, k) \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r \; \bigg| \; (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n} \binom{n}{m} (-1)^m 2^{2m-k}S_{1, \lambda}(m, k)(n-m)!\mathfrak{C}_{n-m, \lambda}^{(r)}. \\ \end{split} \end{equation} (2.9)

    Therefore, from (2.8) and (2.9), we have the desired result.

    The next theorem gives the inversion formula of Theorem 1.

    Theorem 2. For n \in \mathbb{N}\cup \{0\} and r \in \mathbb{N} , we have

    \begin{equation*} (1)_{n, \lambda} = \sum\limits_{k = 0}^{n} \frac{k!r!}{4^k} (-1)^k \bigg( \sum\limits_{l = k}^{n}2^l \binom{n}{l}(n-l+r)_r S_{2, \lambda}(l, k)S_{2, \lambda}(n-l+r, r)\bigg)\mathfrak{C}^{(r)}_{k, \lambda}(x). \end{equation*}

    Proof. From (2.7), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} (x)_{n, \lambda} \sim \big(1, \; t\big)_\lambda \quad {\rm{and}} \quad \ n! \mathfrak{C}_{n, \lambda}^{(r)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.10)

    From (1.16) and (2.10), we have

    \begin{equation} \begin{split} (1)_{n, \lambda} = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} \mathfrak{C}^{(r)}_{k, \lambda}(x). \end{split} \end{equation} (2.11)

    First, by (1.9), we observe that

    \begin{equation} \begin{split} \bigg(\frac{e_{\lambda}(t)-1}{t}\bigg)^r = \frac{r!}{t^r}\frac{(e_\lambda(t)-1)^r}{r!} = r!\sum\limits_{m = 0}^{\infty}(m+r)_r S_{2, \lambda}(m+r, r)\frac{t^m}{n!}. \end{split} \end{equation} (2.12)

    Then, from (1.2), (1.9), (1.16) and (2.12) we have

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!} \bigg < \bigg(\frac{e_{\lambda}(t)-1}{t}\bigg)^r \big(\frac{1}{4}(1-e_{\lambda}(2t))\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{4^k} (-1)^k \sum\limits_{l = k}^{n}2^l S_{2, \lambda}(l, k)\binom{n}{l} \bigg < \bigg(\frac{e_{\lambda}(t)-1}{t}\bigg)^r \; \bigg| (x)_{n-l, \lambda} \bigg > _\lambda\\ & = \frac{r!}{4^k} (-1)^k \sum\limits_{l = k}^{n}2^l S_{2, \lambda}(l, k)\binom{n}{l}(n-l+r)_r S_{2, \lambda}(n-l+r, r). \end{split} \end{equation} (2.13)

    Therefore, from (2.11) and (2.13), we have what we want.

    Theorem 3. For n \in \mathbb{N}\cup \{0\} , we have

    \begin{equation*} \begin{split} \mathfrak{C}^{(r)}_{n, \lambda}(x) = \frac{1}{n!} \sum\limits_{k = 0}^{n}\bigg(\sum\limits_{l = k}^{n}\sum\limits_{m = l}^{n}\frac{n!}{m!}(-1)^m2^{2m-l}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k)\mathfrak{C}^{(r)}_{n-m, \lambda}\bigg)(x)_{k}. \end{split} \end{equation*}

    Proof. We note that

    \begin{equation} (x)_n \sim (1, e_\lambda(t)-1)_\lambda \end{equation} (2.14)

    because of e_\lambda^x(\log(1+t)) = (1+t)^x = \sum\limits_{n = 0}^\infty (x)_n \frac{t^n}{n!} .

    From (2.6) and (2.14), we consider the following two degenerate Sheffer sequences.

    \begin{equation} \begin{split} n! \mathfrak{C}_{n, \lambda}^{(r)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ (x)_{n} \sim \big(1, \; e_{\lambda}(t)-1\big)_\lambda. \end{split} \end{equation} (2.15)

    From (1.8), (1.9), (1.16) and (2.15), we observe that

    \begin{equation} \begin{split} n!\mathfrak{C}_{n, \lambda}^{(r)}(x) = \sum\limits_{k = 0}^n z_{n, k} (x)_{k}, \end{split} \end{equation} (2.16)

    and

    \begin{equation} \begin{split} \frac{\big(e_\lambda(\frac{1}{2}\log_{\lambda} (1-4t))-1\big)^k}{k!}& = \sum\limits_{l = k}^{\infty}S_{2, \lambda}(l, k)\frac{\big(\frac{1}{2} \log_{\lambda}(1-4t)\big)^l}{l!} \\ & = \sum\limits_{m = l}^{\infty}\sum\limits_{l = k}^{\infty} (-1)^m 2^{2m-l}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) \frac{t^m}{m!}. \end{split} \end{equation} (2.17)

    From (1.16) and (2.17), we obtain

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r \big(e_\lambda(\frac{1}{2}\log_{\lambda} (1-4t))-1\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda \\ & = \sum\limits_{m = l}^{n}\sum\limits_{l = k}^{n} (-1)^m 2^{2m-l}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) \binom{n}{m}\bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}\bigg)^r \; \bigg| (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = l}^{n}\sum\limits_{l = k}^{n} (-1)^m 2^{2m-l}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) \binom{n}{m}(n-m)!\mathfrak{C}^{(r)}_{n-m, \lambda}\\ & = \sum\limits_{l = k}^{n}\sum\limits_{m = l}^{n}\frac{n!}{m!}(-1)^m 2^{2m-l} S_{1, \lambda}(m, l) S_{2, \lambda}(l, k)\mathfrak{C}^{(r)}_{n-m, \lambda}. \end{split} \end{equation} (2.18)

    From (2.16) and (2.18), we get the desired result.

    The next theorem is the inversion formula of Theorem 3.

    Theorem 4. For n \in \mathbb{N}\cup \{0\} and r \in \mathbb{N} , we have

    \begin{equation*} \begin{split} (x)_n = \sum\limits_{k = 0}^{n} k!\bigg(\sum\limits_{l = k}^{n}\sum\limits_{m = l}^{n}\binom{n}{m}(-1)^k 2^{l-2k} S_{1, \lambda} (m, l) S_{2, \lambda} (l, k) b^{(r)}_{n-m, \lambda}\bigg) \mathfrak{C}^{(r)}_{k, \lambda}(x), \end{split} \end{equation*}

    where b^{(r)}_{n, \lambda} are the Bernoulli numbers of the second kind of order r .

    Proof. From (2.15), we consider the following two degenerate Sheffer sequences.

    \begin{equation} \begin{split} (x)_{n} \sim \big(1, \; t\big)_\lambda \quad {\rm{and}} \quad \ n! \mathfrak{C}_{n, \lambda}^{(r)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.19)

    From (1.16) and (2.19), we have

    \begin{equation} \begin{split} (x)_{n} = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}^{(r)}_{k, \lambda}(x). \end{split} \end{equation} (2.20)

    From (1.5), (1.8), (1.9) and (1.16), we get

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!} \bigg < \bigg(\frac{t}{\log_{\lambda}(1+t)}\bigg)^r \frac{1}{4^k}(1-e_{\lambda}(2\log_{\lambda}(1+t)))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda \\ & = \frac{(-1)^k}{4^k} \sum\limits_{l = k}^{n} S_{2, \lambda} (l, k) 2^l \bigg < \bigg(\frac{t}{\log_{\lambda}(1+t)}\bigg)^r \; \bigg| \bigg(\frac{(\log_{\lambda} (1+t))^l}{l!}\bigg)_\lambda (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{(-1)^k}{4^k}\sum\limits_{l = k}^{n} S_{2, \lambda}(l, k) 2^l \sum\limits_{m = l}^{n} S_{1, \lambda}(m, l) \binom{n}{m} \bigg < \bigg(\frac{t}{\log_{\lambda}(1+t)}\bigg)^r \; \bigg| (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{l = k}^{n}\sum\limits_{m = l}^{n}\binom{n}{m} (-1)^k 2^{l-2k} S_{1, \lambda}(m, l) S_{2, \lambda} (l, k) b^{(r)}_{n-m, \lambda}. \end{split} \end{equation} (2.21)

    Combining (2.20) and (2.21), we prove the theorem.

    Theorem 5. For n \in \mathbb{N}\cup \{0\} , we have

    (1) \rm when r_1 = r_2 , \mathfrak{C}^{(r_1)}_{n, \lambda}(x) = \frac{1}{n!}\sum\limits_{k = 0}^{n} (-1)^m 2^{2n-k}S_{1, \lambda}(n, k)B^{(r_2)}_{k, \lambda}(x),

    (2) when r_1\neq r_2 , \mathfrak{C}^{(r_1)}_{n, \lambda}(x) = \sum\limits_{k = 0}^{n}\sum\limits_{l = k}^{n} \binom{n}{l} (-1)^l 2^{2l-k} (n-l)! S_{1, \lambda}(l, k)\mathfrak{C}_{n-k, \lambda}^{(r_1-r_2)}B^{(r_2)}_{k, \lambda}(x),

    where B_{k, \lambda}^{(r)}(x) are the Bernoulli polynomials of order r .

    Proof. From (1.3), (1.15) and (2.6), we consider two degenerate Sheffer sequences as follows:

    \begin{equation} \begin{split} n! \mathfrak{C}^{(r_1)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ B^{(r_2)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda (t) -1}{t}\bigg)^{r_2}, \; t\big)_\lambda. \end{split} \end{equation} (2.22)

    From (1.16) and (2.22), we have

    \begin{equation} \begin{split} n!\mathfrak{C}^{(r_1)}_{n, \lambda}(x) = \sum\limits_{k = 0}^n z_{n, k} B^{(r_2)}_{k, \lambda}(x), \end{split} \end{equation} (2.23)

    From (1.8) and (1.16), we have

    when r_1 = r_2 ,

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \frac{1}{2^k}(\log_{\lambda}(1-4t))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^k}S_{1, \lambda}(n, k)(-4)^n = (-1)^m 2^{2n-k} S_{1, \lambda}(n, k), \end{split} \end{equation} (2.24)

    when r_1 > r_2 ,

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg(\frac{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}{\frac{1}{2}\log_{\lambda}(1-4t)} \bigg)^{r_2-r_1} \frac{1}{2^k}\big(\log_{\lambda}(1-4t)\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^k}\sum\limits_{l = k}^{n}S_{1, \lambda}(l, k)(-4)^l \binom{n}{l}\bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1} \bigg)^{r_1-r_2} \; \bigg| \; (x)_{n-l, \lambda} \bigg > _\lambda\\ & = \sum\limits_{l = k}^{n}(-1)^l 2^{2l-k} \binom{n}{l} S_{1, \lambda}(l, k)(n-l)!\mathfrak{C}_{n-k, \lambda}^{(r_1-r_2)}, \end{split} \end{equation} (2.25)

    and when r_1 < r_2 ,

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg(\frac{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}{\frac{1}{2}\log_{\lambda}(1-4t)} \bigg)^{r_2-r_1} \frac{1}{2^k}\big(\log_{\lambda}(1-4t)\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \sum\limits_{l = k}^{n}(-1)^l 2^{2l-k}\binom{n}{l}S_{1, \lambda}(l, k) \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{{e_{\lambda}(\frac{1}{2}\log_{\lambda}(1-4t))-1}} \bigg)^{r_1-r_2} \; \bigg| \; (x)_{n-l, \lambda} \bigg > _\lambda\\ & = \sum\limits_{l = k}^{n}(-1)^l 2^{2l-k}\binom{n}{l}S_{1, \lambda}(l, k) (n-l)!\mathfrak{C}_{n-k, \lambda}^{(r_1-r_2)}. \end{split} \end{equation} (2.26)

    Therefore, from (2.23), (2.24), (2.25) and (2.26), we have the desired result.

    The following theorem gives the inversion formula of Theorem 5.

    Theorem 6. For n \in \mathbb{N}\cup \{0\} , we have

    (1) {\rm when} r_1 = r_2 , B^{(r_2)}_{n, \lambda}(x) = \sum\limits_{k = 0}^{n}k!\bigg((-1)^k 2^{n-2k}S_{2, \lambda}(n, k)\bigg)\mathfrak{C}^{(r_1)}_{k, \lambda}(x),

    (2) \rm when r_1\neq r_2 , B^{(r_2)}_{n, \lambda}(x) = \sum\limits_{k = 0}^{n}(-1)^k k!\bigg(\sum\limits_{l = k}^{n} \binom{n}{l} 2^{l-2k} S_{2, \lambda}(l, k)B_{n-l, \lambda}^{(r_2-r_1)}\bigg)\mathfrak{C}^{(r_1)}_{k, \lambda}(x).

    Proof. From (2.22), we consider the two degenerate Sheffer sequences as follows:

    \begin{equation} \begin{split} B^{(r_2)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda (t) -1}{t}\bigg)^{r_2}, \; t\bigg)_\lambda \quad {\rm{and}} \quad \ n! \mathfrak{C}_{n, \lambda}^{(r_1)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.27)

    From (1.16) and (2.27), we have

    \begin{equation} \begin{split} B^{(r_2)}_{n, \lambda}(x) = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}^{(r_1)}_{k, \lambda}(x). \end{split} \end{equation} (2.28)

    And from (1.3), (1.5) and (1.16), we get

    when r_1 = r_2 ,

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!} \bigg < \frac{(-1)^k}{4^k}(e_\lambda (2t)-1)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda \\ & = (-1)^k 2^{-2k} \bigg < \sum\limits_{l = k}^{\infty} S_{2, \lambda} (l, k) 2^l\frac{t^l}{l!} \; \bigg| (x)_{n, \lambda} \bigg > _\lambda = (-1)^k 2^{n-2k}S_{2, \lambda}(n, k), \end{split} \end{equation} (2.29)

    when r_1 > r_2 ,

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!} \bigg < \bigg(\frac{e_\lambda (t)-1}{t}\bigg)^{r_1-r_2}\frac{1}{4^k}(1-e_\lambda (2t))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = (-1)^k 2^{-2k} \sum\limits_{l = k}^{n} S_{2, \lambda} (l, k) 2^l \binom{n}{l}\bigg < \bigg(\frac{t}{e_\lambda (t)-1}\bigg)^{r_2-r_1} \; \bigg| (x)_{n-l, \lambda} \bigg > _\lambda\\ & = (-1)^k \sum\limits_{l = k}^{n}2^{l-2k} \binom{n}{l} S_{2, \lambda}(l, k)B_{n-l, \lambda}^{(r_2-r_1)}, \end{split} \end{equation} (2.30)

    and when r_1 < r_2 ,

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!} \bigg < \bigg(\frac{t}{e_\lambda (t)-1}\bigg)^{r_2-r_1}\frac{1}{4^k}(1-e_\lambda (2t))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda \\ & = (-1)^k \sum\limits_{l = k}^{n}2^{l-2k} \binom{n}{l} S_{2, \lambda}(l, k)B_{n-l, \lambda}^{(r_2-r_1)}. \end{split} \end{equation} (2.31)

    From (2.28), (2.29), (2.30) and (2.31), we arrive at the desired result.

    Theorem 7. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \begin{split} \mathfrak{C}_{n, \lambda}^{(r_1)}(x)& = \frac{1}{n!}\sum\limits_{k = 0}^n \bigg(\frac{1}{2^{k+1}}\sum\limits_{l = k}^{n}S_{1, \lambda}(l, k)(-4)^l \binom{n}{l}\sum\limits_{m = 0}^{n-l}m!\mathfrak{C}^{(r_1)}_{m, \lambda} \binom{n-l}{m}\\ & \quad \times \sum\limits_{j = i}^{n-l-m}\sum\limits_{i = 0}^{r_2}(-1)^{n-l-m}2^{r_2-i-j-2(n-l-m)}S_{2, \lambda}(j, i)S_{1, \lambda}(n-l-m, j)\bigg) E^{(r_2)}_{k, \lambda}(x), \end{split} \end{equation*}

    where E_{n, \lambda}^{(r)}(x) are the degenerate Euler polynomials of order r .

    Proof. From (1.4), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} n! \mathfrak{C}^{(r_1)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ E^{(r_2)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda (t) + 1}{2}\bigg)^{r_2}, \; t\bigg)_\lambda. \end{split} \end{equation} (2.32)

    From (1.16) and (2.32), we give

    \begin{equation} \begin{split} n!\mathfrak{C}_{n, \lambda}^{(r_1)}(x) = \sum\limits_{k = 0}^n z_{n, k} E^{(r_2)}_{k, \lambda}(x). \end{split} \end{equation} (2.33)

    Observe that

    \begin{equation} \begin{split} \big(e_\lambda(\frac{1}{2}\log(1-4t))+1\big)^r & = \big(e_\lambda(\frac{1}{2}\log(1-4t))-1+2\big)^r \\ & = \sum\limits_{i = 0}^{r}\binom{r}{i}\big(e_\lambda(\frac{1}{2}\log(1-4t))-1\big)^i 2^{r-i}\\ & = \sum\limits_{i = 0}^{r}\binom{r}{i}2^{r-i}i!\sum\limits_{j = i}^{\infty}S_{2, \lambda}(j, i)\frac{(\frac{1}{2})^j(\log(1-4t))^j}{j!}\\ & = \sum\limits_{i = 0}^{r}\binom{r}{i}2^{r-i-j}i!\sum\limits_{j = i}^{\infty}S_{2, \lambda}(j, i)\sum\limits_{d = j}^{\infty}S_{1, \lambda}(d, j)(-4)^d \frac{t^d}{d!}\\ & = \sum\limits_{d = i}^{\infty}\sum\limits_{j = i}^{d}\sum\limits_{i = 0}^{r}(-1)^d 2^{r-i-j+2d}S_{2, \lambda}(j, i)S_{1, \lambda}(d, j)\frac{t^d}{d!}. \end{split} \end{equation} (2.34)

    From (1.2), (1.8), (1.16), (2.3) and (2.34), we obtain

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg( \frac{e_{\lambda}\big(\frac{1}{2}\log_{\lambda} (1-4t)\big)+1}{2}\bigg)^{r_2} \bigg(\frac{\frac{1}{2}(\log_{\lambda}(1-4t))}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^{r_1}\\ & \quad \times \frac{1}{2^k}\big(\log_\lambda (1-4t)\big)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^{k+1}}\sum\limits_{l = k}^{n}S_{1, \lambda}(l, k)(-4)^l \binom{n}{l}\sum\limits_{m = 0}^{n-l}m!\mathfrak{C}^{(r_1)}_{m, \lambda} \binom{n-l}{m}\\ & \quad \times\bigg < \bigg( \frac{e_{\lambda}\big(\frac{1}{2}\log_{\lambda} (1-4t)\big)+1}{2}\bigg)^{r_2}\; \bigg| \; (x)_{n-l-m, \lambda} \bigg > _\lambda\\ & = \frac{1}{2^{k+1}}\sum\limits_{l = k}^{n}S_{1, \lambda}(l, k)(-4)^l \binom{n}{l}\sum\limits_{m = 0}^{n-l}m!\mathfrak{C}^{(r_1)}_{m, \lambda} \binom{n-l}{m}\\ & \quad \times \sum\limits_{j = i}^{n-l-m}\sum\limits_{i = 0}^{r_2}(-1)^{n-l-m} 2^{r_2-i-j+2(n-l-m)}S_{2, \lambda}(j, i)S_{1, \lambda}(n-l-m, j). \end{split} \end{equation} (2.35)

    Therefore, from (2.33) and (2.35), we arrive at the desired result.

    Theorem 8. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \begin{split} E_{n, \lambda}^{(r_2)}(x) & = \sum\limits_{k = 0}^n k!\bigg(2^{-2k}(-1)^k \sum\limits_{l = k}^{n}\sum\limits_{m = 0}^{n-l} \binom{n}{l} \binom{n-l}{m} \frac{2^l (1)_{n-l-m+1, \lambda}}{n-l-m+1}\\ & \quad \times S_{2, \lambda}(l, k) E_{m, \lambda}^{(r_2)}\bigg) \mathfrak{C}^{(r_1)}_{k, \lambda}(x), \end{split} \end{equation*}

    where E_{n, \lambda}^{(r)}(x) are the degenerate Euler polynomials of order r .

    Proof. From (1.4), (1.15) and (2.5), we consider two degenerate Sheffer sequences as follows:

    \begin{equation} \begin{split} E_{n, \lambda}^{(r_2)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)+1}{2}\bigg)^{r_2}, \; t \bigg)_\lambda \quad {\rm{and}} \quad \ n! \mathfrak{C}^{(r_1)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.36)

    From (1.16) and (2.36), we have

    \begin{equation} \begin{split} E_{n, \lambda}^{(r_2)}(x) = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}^{(r_1)}_{k, \lambda}(x), \end{split} \end{equation} (2.37)

    and from (1.2), (1.4), (1.9) and (1.16), we get

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \bigg < \bigg(\frac{2}{e_\lambda (t)+1}\bigg)^{r_2}\bigg(\frac{e_\lambda (t)-1}{t}\bigg)^{r_1} \frac{1}{4^k}\frac{(1-e_{\lambda} (2t))^k}{k!} \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda. \\ & = 2^{-2k}(-1)^k \sum\limits_{l = k}^{n} S_{2, \lambda} (l, k) 2^l \binom{n}{l}\bigg < \bigg(\frac{e_\lambda (t)-1}{t}\bigg)^{r_1} \; \bigg| \bigg(\frac{2}{e_\lambda(t)+1}\bigg)^{r_2}_\lambda (x)_{n-l, \lambda} \bigg > _\lambda\\ & = 2^{-2k}(-1)^k \sum\limits_{l = k}^{n} \binom{n}{l}2^l S_{2, \lambda} (l, k) \sum\limits_{m = 0}^{n-l}\binom{n-l}{m}E_{m, \lambda}^{(r_2)}\bigg < \bigg(\frac{e_\lambda (t)-1}{t}\bigg)^{r_1} \; \bigg| (x)_{n-l-m, \lambda} \bigg > _\lambda\\ & = 2^{-2k}(-1)^k \sum\limits_{l = k}^{n} \binom{n}{l}2^l S_{2, \lambda} (l, k) \sum\limits_{m = 0}^{n-l}\binom{n-l}{m}E_{m, \lambda}^{(r_2)} \frac{(1)_{n-l-m+1, \lambda}}{n-l-m+1}. \end{split} \end{equation} (2.38)

    From (2.37) and (2.38), we deduce the desired result.

    Theorem 9. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \mathfrak{C}^{(r_1)}_{n-m, \lambda}(x) = \frac{1}{n!}\sum\limits_{k = 0}^{n}\bigg( \sum\limits_{m = l}^{n}\sum\limits_{l = k}^{m}\binom{n}{m}(-1)^m 2^{2m-l} (n-m)! S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) \mathfrak{C}_{n-m, \lambda}^{(r_1+r_2)}\bigg)b^{(r_2)}_{k, \lambda}(x), \end{equation*}

    where b_{n, \lambda}^{(r)}(x) are degenerate Bernoulli polynomials of the second kind of order r .

    Proof. From (1.5), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} n! \mathfrak{C}_{n, \lambda}^{(r_1)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \ {\rm{and}} \ \ b_{n, \lambda}^{(r_2)}(x) \sim \bigg(\bigg(\frac{t}{e_\lambda (t) - 1}\bigg)^{r_2}, \; e_\lambda (t) - 1\bigg)_\lambda. \end{split} \end{equation} (2.39)

    From (1.16) and (2.39), we have

    \begin{equation} \begin{split} n!\mathfrak{C}_{n, \lambda}^{(r_1)}(x) = \sum\limits_{k = 0}^n z_{n, k} b_{k, \lambda}^{(r_2)}(x). \end{split} \end{equation} (2.40)

    From (1.8), (1.16) and (2.3), we derive

    \begin{equation} \begin{split} z_{n, k} & = \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda} (1-4t)}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^{r_1} \bigg(\frac{\frac{1}{2}\log_{\lambda}(1-4t)}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^{r_2} \\ & \quad \; \bigg| \; \bigg(\frac{1}{k!}\bigg(e_\lambda \bigg(\frac{1}{2}\log_\lambda (1-4t)\bigg)-1\bigg)^k\bigg)_\lambda (x)_{n, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = l}^{n}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l} S_{2, \lambda}(l, k) S_{1, \lambda}(m, l)\binom{n}{m} \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda} (1-4t)}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^{r_1+r_2}\; \bigg| \; (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = l}^{n}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l} \binom{n}{m} S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) (n-m)!\mathfrak{C}_{n-m, \lambda}^{(r_1+r_2)}. \end{split} \end{equation} (2.41)

    Therefore, from (2.40) and (2.41), we have the desired result.

    The next theorem is the inversion formula of Theorem 9.

    Theorem 10. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} b_{n, \lambda}^{(r_2)}(x) = \sum\limits_{k = 0}^n k!\bigg(\sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m} 2^{l-2k}\binom{n}{m}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k)b_{n, \lambda}^{(r_1+r_2)}\bigg) \mathfrak{C}_{k, \lambda}^{(r_1)}(x), \end{equation*}

    where b_{n, \lambda}^{(r)}(x) are degenerate Bernoulli polynomials of the second kind of order r .

    Proof. From (1.8) and (1.9), we observe that

    \begin{equation} \begin{split} &\frac{(e_\lambda(2\log_\lambda(1+t))-1)^k}{k!} = \sum\limits_{l = k}^{\infty}S_{2, \lambda}(l, k)\frac{2^l(\log_\lambda(1+t))^l}{l!}\\ & \quad = \sum\limits_{l = k}^{\infty}S_{2, \lambda}(l, k)2^l\sum\limits_{m = l}^{\infty}S_{1, \lambda}(m, l)\frac{t^m}{m!} = \sum\limits_{m = k}^{\infty}\sum\limits_{l = k}^{m}2^l S_{1, \lambda}(m, l)S_{2, \lambda}(l, k)\frac{t^m}{m!}. \end{split} \end{equation} (2.42)

    From (2.39), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} b_{n, \lambda}^{(r_2)}(x) \sim \bigg(\bigg(\frac{t}{e_\lambda (t) - 1}\bigg)^{r_2}, \; e_\lambda (t) - 1\bigg)_\lambda \quad {\rm{and}} \quad \ n! \mathfrak{C}_{n, \lambda}^{(r_1)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.43)

    We have

    \begin{equation} \begin{split} b_{n, \lambda}^{(r_2)}(x) = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}_{k, \lambda}^{(r_1)}(x). \end{split} \end{equation} (2.44)

    From (1.5), (1.8), (1.9), (1.16) and (2.42),

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!}\bigg < \bigg(\frac{t}{\log_\lambda(1+t)}\bigg)^{r_1+r_2}\frac{1}{4^k}(1-e_{\lambda} (2\log_\lambda(1+t)))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda. \\ & = 2^{-2k} \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m} 2^l S_{1, \lambda} (m, l)S_{2, \lambda} (l, k) \binom{n}{m}\bigg < \bigg(\frac{t}{\log_{\lambda}(1+t)}\bigg)^{r_1+r_2} \; \bigg| (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m} 2^{l-2k}\binom{n}{m}S_{1, \lambda}(m, l)S_{2, \lambda}(l, k)b_{n, \lambda}^{(r_1+r_2)}.\\ \end{split} \end{equation} (2.45)

    Thus, from (2.44) and (2.45), we get the desired result.

    Theorem 11. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \mathfrak{C}_{n, \lambda}^{(r_1)}(x) = \frac{1}{n!}\sum\limits_{k = 0}^{n} \sum\limits_{l = k}^{n}2^{l} S_{1, \lambda}(n, l)S_{2, \lambda}(l, k)D_{n, \lambda}^{(r_2)}(x), \end{equation*}

    where D_{n, \lambda}^{(r)}(x) are degenerate Daehee polynomials of order r .

    Proof. From (1.6), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} n! \mathfrak{C}_{n, \lambda}^{(r_1)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ D_{n, \lambda}^{(r_2)}(x) \sim \bigg(\bigg(\frac{e_\lambda (t) - 1}{t}\bigg)^{r_2}, \; e_\lambda (t) - 1\bigg)_\lambda. \end{split} \end{equation} (2.46)

    From (1.16) and (2.44), we have

    \begin{equation} \begin{split} n!\mathfrak{C}^{(r_1)}_{n, \lambda}(x) = \sum\limits_{k = 0}^n z_{n, k} D^{(r_2)}_{k, \lambda}(x), \end{split} \end{equation} (2.47)

    and from (1.8), (1.9) and (1.16), we get

    \begin{equation} \begin{split} z_{n, k} & = \frac{1}{k!} \bigg < \bigg(e_\lambda\big(\frac{1}{2}\log_{\lambda} (1-4t)\big)-1\bigg)^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m} 2^{l} S_{1, \lambda}(m, l)S_{2, \lambda}(l, k) \frac{1}{m!}\bigg < t^m \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda = \sum\limits_{l = k}^{n}2^{l}S_{1, \lambda}(n, l)S_{2, \lambda}(l, k). \end{split} \end{equation} (2.48)

    From (2.47) and (2.48), we have the desired result.

    The next theorem represents the inversion formula of Theorem 11.

    Theorem 12. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \begin{split} D_{n, \lambda}^{(r_2)}(x) = \sum\limits_{k = 0}^{n}k! \bigg(\sum\limits_{l = k}^{n} 2^{l-2k}(-1)^k k!S_{1, \lambda}(n, l)S_{2, \lambda}(l, k)\bigg)\mathfrak{C}^{(r_1)}_{k, \lambda}(x), \end{split} \end{equation*}

    where D_{n, \lambda}^{(r)}(x) are degenerate Daehee polynomials of order r .

    Proof. By (2.46), we consider the following two degenerate Sheffer sequences

    \begin{equation} \begin{split} D_{n, \lambda}^{(r_2)}(x) \sim \bigg(\bigg(\frac{e_\lambda (t) - 1}{t}\bigg)^{r_2}, \; e_\lambda (t) - 1\bigg)_\lambda {\rm{and}} \ n! \mathfrak{C}^{(r_1)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^{r_1}, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda, \end{split} \end{equation} (2.49)

    and from (1.16) and (2.49), we get

    \begin{equation} \begin{split} D_{n, \lambda}^{(r_2)}(x) = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}_{k, \lambda}^{(r_1)}(x). \end{split} \end{equation} (2.50)

    From (1.8), (1.9), (1.16) and (2.42), we have

    \begin{equation} \begin{split} \widetilde{z_{n, k}} & = \frac{1}{k!}\bigg < \frac{1}{4^k}(1-e_{\lambda} (2\log_\lambda(1+t)))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \frac{(-1)^k}{4^k}\sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m} 2^l S_{1, \lambda} (m, l)S_{2, \lambda} (l, k)\frac{1}{m!}\bigg < t^m \; \bigg| (x)_{n, \lambda} \bigg > _\lambda = (-1)^k \sum\limits_{l = k}^{n} 2^{l-2k} S_{1, \lambda}(n, l)S_{2, \lambda}(l, k). \end{split} \end{equation} (2.51)

    From (2.50) and (2.51), we obtain the desired result.

    Theorem 13. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \begin{split} \mathfrak{C}_{n, \lambda}^{(r)}(x)& = \frac{1}{n!} \sum\limits_{k = 0}^{n} \bigg(\sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l}\binom{n}{m}(n-m)!\\ & \quad S_{1, \lambda}(m, l)S_{1, \lambda}(l, k)\mathfrak{C}_{n-m, \lambda}^{(r)}\bigg) Bel_{k, \lambda}(x), \end{split} \end{equation*}

    where Bel_{n, \lambda}(x) are degenerate Bell polynomials.

    Proof. From (1.8) and (2.3), we observe that

    \begin{equation} \begin{split} \frac{\log_\lambda(1+\frac{1}{2}\log_\lambda(1-4t))^k}{k!} & = \sum\limits_{l = k}^{\infty}S_{1, \lambda}(l, k)\frac{\big(\frac{1}{2}\big)^l\big(\log_\lambda(1-4t))^l}{l!} \\ & = \sum\limits_{m = k}^{\infty}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l}S_{1, \lambda}(l, k)S_{1, \lambda}(m, l)\frac{t^m}{m!}. \end{split} \end{equation} (2.52)

    From (1.7) and (1.15), we consider the following two degenerate Sheffer sequences as follows:

    \begin{equation} \begin{split} n! \mathfrak{C}_{n, \lambda}^{(r)}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda \quad {\rm{and}} \quad \ Bel_{k, \lambda}(x) \sim \bigg(1, \log_\lambda(1+t)\bigg)_\lambda. \end{split} \end{equation} (2.53)

    From (1.16) and (2.53), we have

    \begin{equation} \begin{split} n!\mathfrak{C}_{n, \lambda}^{(r)}(x) = \sum\limits_{k = 0}^n z_{n, k} Bel_{k, \lambda}(x). \end{split} \end{equation} (2.54)

    From (1.16), (2.3) and (2.52), we get

    \begin{equation} \begin{split} z_{n, k}& = \frac{1}{k!} \bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda} (1-4t)}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^r \bigg(\log_\lambda(1+\frac{1}{2}(\log_{\lambda}(1-4t)))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l} S_{1, \lambda}(l, k)S_{1, \lambda}(m, l) \binom{n}{m}\bigg < \bigg(\frac{\frac{1}{2}\log_{\lambda} (1-4t)}{e_{\lambda}\big(\frac{1}{2}\log_\lambda (1-4t)\big) - 1}\bigg)^{r}\; \bigg| \; (x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}(-1)^m 2^{2m-l}\binom{n}{m}(n-m)!S_{1, \lambda}(m, l)S_{1, \lambda}(l, k)\mathfrak{C}_{n-m, \lambda}^{(r)}. \end{split} \end{equation} (2.55)

    Thus, from (2.54) and (2.55), we have the desired result.

    The next theorem is the inversion formula of Theorem 13.

    Theorem 14. For n \in \mathbb{N}\cup \{0\} and s \in \mathbb{N} , we have

    \begin{equation*} \begin{split} Bel_{n, \lambda}(x)& = \sum\limits_{k = 0}^{n}k!r!\bigg(\sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}\sum\limits_{d = 0}^{n-m}\sum\limits_{j = r}^{d+r}\binom{n}{m}\binom{n-m}{d}(-1)^k 2^{l-2k}(d+r)_r \\ & \quad \times S_{2, \lambda}(m, l)S_{2, \lambda}(l, k)S_{2, \lambda}(d+r, j)S_{2, \lambda}(j, r)B_{n-m-d, \lambda}^{(r)}\bigg) \mathfrak{C}^{(r)}_{k, \lambda}(x), \end{split} \end{equation*}

    where Bel_{n, \lambda}(x) are degenerate Bell polynomials.

    Proof. From (2.53), we consider two degenerate Sheffer sequences as follows:

    \begin{equation} \begin{split} Bel_{k, \lambda}(x) \sim \bigg(1, \log_\lambda(1+t)\bigg)_\lambda \quad {\rm{and}} \quad \ \ n! \mathfrak{C}^{(r)}_{n, \lambda}(x) \sim \bigg(\bigg(\frac{e_\lambda(t)-1}{t}\bigg)^r, \; \frac{1}{4}(1-e_{\lambda}(2t)) \bigg)_\lambda. \end{split} \end{equation} (2.56)

    From (1.16) and (2.56), we have

    \begin{equation} \begin{split} Bel_{n, \lambda}(x) = \sum\limits_{k = 0}^n \widetilde{z_{n, k}} k!\mathfrak{C}^{(r)}_{k, \lambda}(x). \end{split} \end{equation} (2.57)

    First, from (1.2), (1.9) and (1.10), we have two identities as follows:

    \begin{equation} \begin{split} \frac{(e_{\lambda} (2(e_\lambda (t)-1))-1)^k}{k!}& = (-1)^k\sum\limits_{l = k}^{\infty}S_{2, \lambda}(l, k)\frac{2^l (e_\lambda (t)-1)^l}{l!} \\ & = \sum\limits_{m = k}^{\infty}\sum\limits_{l = k}^{m}S_{2, \lambda}(l, k) \; 2^l S_{2, \lambda}(m, k)\frac{t^m}{m!}, \end{split} \end{equation} (2.58)

    and

    \begin{equation} \begin{split} \bigg(\frac{e_{\lambda}(e_\lambda(t)-1)}{t}\bigg)^r & = \frac{r!}{t^r}\frac{1}{r!}\big(e_{\lambda}(e_\lambda(t)-1)-1\big)^r = r!\frac{1}{t^r}\sum\limits_{d = r}^{\infty}S_{J, \lambda}(d, r)\frac{t^d}{d!} \\ & = r!\sum\limits_{d = 0}^{\infty}S_{J, \lambda}(d+r, r)\frac{t^d}{(d+r)!} = r!\sum\limits_{l = 0}^{\infty}(d+r)_r S_{J, \lambda}(d+r, r)\frac{t^d}{d!}, \end{split} \end{equation} (2.59)

    where S_{J, \lambda}(n, r) are the Jindalrae-Stirling numbers of the second kind [18].

    From (1.11), (1.16), (2.58) and (2.59), we observe that

    \begin{equation} \begin{split} &\widetilde{z_{n, k}} = \frac{1}{k!}\bigg < \bigg(\frac{e_\lambda(e_\lambda (t)-1)-1}{e_\lambda (t)-1}\bigg)^r\frac{1}{4^k}(1-e_{\lambda} (2(e_{\lambda} (t)-1)))^k \; \bigg| \; (x)_{n, \lambda} \bigg > _\lambda \\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}(-1)^k 2^{l-2k} \binom{n}{m}S_{2, \lambda}(m, l)S_{2, \lambda}(l, k)\\ & \quad \times \bigg < \bigg(\frac{t}{e_\lambda(t)-1}\bigg)^r \; \bigg| \bigg(\bigg(\frac{e_\lambda(e_\lambda(t)-1)-1}{t}\bigg)^r\bigg)_\lambda(x)_{n-m, \lambda} \bigg > _\lambda\\ & = \sum\limits_{m = k}^{n}\sum\limits_{l = k}^{m}(-1)^k 2^{l-2k} \binom{n}{m}S_{2, \lambda}(m, l)S_{2, \lambda}(l, k)r!\sum\limits_{d = 0}^{n-m}(d+r)_r\\ & \quad \times \sum\limits_{j = r}^{d+r}S_{2, \lambda}(d+r, j)S_{2, \lambda}(j, r)\binom{n-m}{d}B_{n-m-d, \lambda}^{(r)}. \end{split} \end{equation} (2.60)

    From (2.57) and (2.60), we get the desired result.

    In this paper, we introduced the degenerate Catalan-Daehee numbers and polynomials of order r ( r\geq 1 ). It was shown that the degenerate Catalan-Daehee polynomials of order r were expressed based on the degenerate falling factorials, the falling factorials, the degenerate Bernoulli polynomials of order r , the Euler polynomials (of order r ), the degenerate Bernoulli polynomials of the second kind of order r , the degenerate Deahee polynomials of order r , and the degenerate Bell polynomials. We also obtained inverse formula for each of them.

    It is difficult to single out where and why these formulas play an important role, but we do not doubt that they will be helpful to researchers in need of these identities. Further research would be related with the degenerate versions of some special combinatorial numbers and polynomials and then contribution in mathematics and physics applications.

    The author would like to thank the referees for the detailed and valuable comments that helped improve the original manuscript in its present form.

    This work was supported by research fund of Kwangwoon University in 2021.

    The authors declare no conflict of interest.



    [1] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
    [2] L. Carlitz, Weighted Stirling numbers of the first and second kind, Fibonacci Quart., 18 (1980), 147–162.
    [3] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. D. Reidel Publishing Co., Dordrecht, 1974. xi+343 pp. ISBN: 90-277-0441-4 05-02. doi: 10.1007/978-94-010-2196-8.
    [4] R. Dere, Y. Simsek, Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math., 22 (2012), 433–438.
    [5] D. V. Dolgy, G. W. Jang, D. S. Kim, T. Kim, Explicit expressions for Catalan-Daehee numbers, Proc. Jangjeon Math. Soc., 20 (2017), 1–9. doi: 10.23001/pjms2017.20.1.1. doi: 10.23001/pjms2017.20.1.1
    [6] T. Ernst, Examples of a q-umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang), 16 (2008), 1–22.
    [7] I. Kucukoglu, B. Simsek, Y. Simsek, New classes of Catalan-type numbers and polynomials with their applications related to p-adic integrals and computational algorithms, Turk. J. Math., 44 (2020), 2337–2355. doi:10.3906/mat-2008-24. doi: 10.3906/mat-2008-24
    [8] D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang), 26 (2016), 733–740.
    [9] D. S. Kim, T. Kim, Some identities of Bernoulli and Euler polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 159–171. doi:10.1186/1687-6180-2013-159. doi: 10.1186/1687-6180-2013-159
    [10] D. S. Kim, T. Kim, Some identities of degenerate Daehee numbers arising from certain differential equations, Jo. Nonlinear Sci. and Appl., 10 (2017), 744–751. doi:10.22436/jnsa.010.02.35. doi: 10.22436/jnsa.010.02.35
    [11] D. S. Kim, T. Kim, Degenerate Sheffer sequence and \lambda-Sheffer sequence, J. Math. Anal. Appl., 23 (2020), 124521. doi:10.1016/j.jmaa.2020.124521. doi: 10.1016/j.jmaa.2020.124521
    [12] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. doi:10.1134/S1061920820020090. doi: 10.1134/S1061920820020090
    [13] H. K. Kim, Degenerate Lah-Bell polynomials arising from degenerate Sheffer sequences, Adv. Difference Equ., 2020 (2020), 16. doi:10.1186/s13662-020-03152-4. doi: 10.1186/s13662-020-03152-4
    [14] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. doi:10.17777/pjms2017.20.3.319. doi: 10.17777/pjms2017.20.3.319
    [15] T. Kim, D. S. Kim, Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus, Rev. R. Acad. Cienc. Exactas. Nat. Ser. A Mat. RACSAM, 114 (2020), 19. doi:10.1007/s13398-019-00732-2. doi: 10.1007/s13398-019-00732-2
    [16] T. Kim, D. S. Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math., 16 (2017), 177–189.
    [17] T. Kim, D. S. Kim, Differential equations associated with Catalan-Darhee numbers and their applications, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Mat. Ser. A Mat., (2016). doi:10.1007/s13398-016-0349-4. doi: 10.1007/s13398-016-0349-4
    [18] T. Kim, D. S. Kim, L. C. Jang, H. Lee, Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae-Stirling numbers, Adv. Difference Equ., 2020 (2020), 19. doi:10.1186/s13662-020-02701-1. doi: 10.1186/s13662-020-02701-1
    [19] T. Kim, D. S. Kim, H. Lee, J. Kwon, A note no some identities of new type degenerate Bell polynomials, Mathematics, 7 (2019), 1086, 12. doi:10.3390/math7111086. doi: 10.3390/math7111086
    [20] T. Kim, D. S. Kim, H. Y. Kim, H. Lee, L. C. Jang, Degenerate Bell polynomials associated with umbral calculus, J. Inequalities Appl., 2020 (2020), 15. doi:10.1186/s13660-020-02494-7. doi: 10.1186/s13660-020-02494-7
    [21] A. K. Kwaśniewski, On \psi-umbral extensions of Stirling numbers and Dobinski-like formulas, Adv. Stud. Contemp. Math. (Kyungshang), 12 (2006), 73–100.
    [22] S. Roman, G. Rota, The umbral calculus, Adv. Math., 27 (1978), 95–188. doi:10.1016/0001-8708(78)90087-7. doi: 10.1016/0001-8708(78)90087-7
    [23] G. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory VIII: Finite operator calculus, J. Math. Anal. Appl., 42 (1973), 684-760. doi:10.1016/0022-247X(73)90172-8. doi: 10.1016/0022-247X(73)90172-8
    [24] R. Mullin, G. C. Rota, On the foundations of combinatorial theory III. Theory of binomial enumeration, In: B. Harris, Ed., Graph Theory and its Applications, Academic Press, 1970,167–213.
    [25] L. W. Shapiro, S. Getu, W. J. Woan, L. Woodson, The Riordan group, Discrete Appl. Math., 34 (1991), 229–239. doi:10.1016/0166-218X(91)90088-E. doi: 10.1016/0166-218X(91)90088-E
    [26] T. X. He, L. C. Hsu, P. J. S. Shiue, The Sheffer group and the Riordan group, Discrete Appl. Math., 155 (2007), 1895–1909. doi:10.1016/j.dam.2007.04.006. doi: 10.1016/j.dam.2007.04.006
    [27] R. P. Stanley, Enumerative Combinatorics., Vol.2, Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999,581.
    [28] Y. Simsek, Special Numbers and Polynomials Including Their Generating Functions in Umbral Analysis Methods, Axioms, 7 (2018), 22. doi:10.3390/axioms7020022. doi: 10.3390/axioms7020022
    [29] W. Zang, L. Chen, On the Catran numbers and some of theire identities, Symmetry, 2019 (2019), 62. doi:10.3390/sym11010062. doi: 10.3390/sym11010062
    [30] D. S. Kim, T. Kim, Degenerate Bernstein polynomials. RACSAM 113 (2019), 2913–2920. doi:10.1007/s13398-018-0594-9. doi: 10.1007/s13398-018-0594-9
    [31] T. Kim, D. S. Kim, J. Kwon, H. Lee, A note on degenerate gamma random variables, Revista Edu., 388 (2020), 39–44.
  • This article has been cited by:

    1. Byung Moon Kim, Taekyun Kim, Jin-Woo Park, Taha Ali Radwan, Sundarapandian Vaidyanathan, Identities on Changhee Polynomials Arising from λ -Sheffer Sequences, 2022, 2022, 1099-0526, 1, 10.1155/2022/5868689
    2. Taekyun Kim, Dae San Kim, Hye Kyung Kim, λ-q-Sheffer sequence and its applications, 2022, 55, 2391-4661, 843, 10.1515/dema-2022-0174
    3. Dorota Bród, Mariola Rubajczyk, Anetta Szynal-Liana, A New Hybrid Generalization of Balancing Polynomials, 2024, 16, 2073-8994, 1397, 10.3390/sym16101397
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2176) PDF downloads(108) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog