Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.
In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.
Citation: Hye Kyung Kim, Dmitry V. Dolgy. Degenerate Catalan-Daehee numbers and polynomials of order $ r $ arising from degenerate umbral calculus[J]. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213
Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.
In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.
[1] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88. |
[2] | L. Carlitz, Weighted Stirling numbers of the first and second kind, Fibonacci Quart., 18 (1980), 147–162. |
[3] | L. Comtet, Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. D. Reidel Publishing Co., Dordrecht, 1974. xi+343 pp. ISBN: 90-277-0441-4 05-02. doi: 10.1007/978-94-010-2196-8. |
[4] | R. Dere, Y. Simsek, Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math., 22 (2012), 433–438. |
[5] | D. V. Dolgy, G. W. Jang, D. S. Kim, T. Kim, Explicit expressions for Catalan-Daehee numbers, Proc. Jangjeon Math. Soc., 20 (2017), 1–9. doi: 10.23001/pjms2017.20.1.1. doi: 10.23001/pjms2017.20.1.1 |
[6] | T. Ernst, Examples of a $q$-umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang), 16 (2008), 1–22. |
[7] | I. Kucukoglu, B. Simsek, Y. Simsek, New classes of Catalan-type numbers and polynomials with their applications related to $p$-adic integrals and computational algorithms, Turk. J. Math., 44 (2020), 2337–2355. doi:10.3906/mat-2008-24. doi: 10.3906/mat-2008-24 |
[8] | D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang), 26 (2016), 733–740. |
[9] | D. S. Kim, T. Kim, Some identities of Bernoulli and Euler polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 159–171. doi:10.1186/1687-6180-2013-159. doi: 10.1186/1687-6180-2013-159 |
[10] | D. S. Kim, T. Kim, Some identities of degenerate Daehee numbers arising from certain differential equations, Jo. Nonlinear Sci. and Appl., 10 (2017), 744–751. doi:10.22436/jnsa.010.02.35. doi: 10.22436/jnsa.010.02.35 |
[11] | D. S. Kim, T. Kim, Degenerate Sheffer sequence and $\lambda$-Sheffer sequence, J. Math. Anal. Appl., 23 (2020), 124521. doi:10.1016/j.jmaa.2020.124521. doi: 10.1016/j.jmaa.2020.124521 |
[12] | D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. doi:10.1134/S1061920820020090. doi: 10.1134/S1061920820020090 |
[13] | H. K. Kim, Degenerate Lah-Bell polynomials arising from degenerate Sheffer sequences, Adv. Difference Equ., 2020 (2020), 16. doi:10.1186/s13662-020-03152-4. doi: 10.1186/s13662-020-03152-4 |
[14] | T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. doi:10.17777/pjms2017.20.3.319. doi: 10.17777/pjms2017.20.3.319 |
[15] | T. Kim, D. S. Kim, Some identities of extended degenerate $r$-central Bell polynomials arising from umbral calculus, Rev. R. Acad. Cienc. Exactas. Nat. Ser. A Mat. RACSAM, 114 (2020), 19. doi:10.1007/s13398-019-00732-2. doi: 10.1007/s13398-019-00732-2 |
[16] | T. Kim, D. S. Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math., 16 (2017), 177–189. |
[17] | T. Kim, D. S. Kim, Differential equations associated with Catalan-Darhee numbers and their applications, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Mat. Ser. A Mat., (2016). doi:10.1007/s13398-016-0349-4. doi: 10.1007/s13398-016-0349-4 |
[18] | T. Kim, D. S. Kim, L. C. Jang, H. Lee, Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae-Stirling numbers, Adv. Difference Equ., 2020 (2020), 19. doi:10.1186/s13662-020-02701-1. doi: 10.1186/s13662-020-02701-1 |
[19] | T. Kim, D. S. Kim, H. Lee, J. Kwon, A note no some identities of new type degenerate Bell polynomials, Mathematics, 7 (2019), 1086, 12. doi:10.3390/math7111086. doi: 10.3390/math7111086 |
[20] | T. Kim, D. S. Kim, H. Y. Kim, H. Lee, L. C. Jang, Degenerate Bell polynomials associated with umbral calculus, J. Inequalities Appl., 2020 (2020), 15. doi:10.1186/s13660-020-02494-7. doi: 10.1186/s13660-020-02494-7 |
[21] | A. K. Kwaśniewski, On $\psi$-umbral extensions of Stirling numbers and Dobinski-like formulas, Adv. Stud. Contemp. Math. (Kyungshang), 12 (2006), 73–100. |
[22] | S. Roman, G. Rota, The umbral calculus, Adv. Math., 27 (1978), 95–188. doi:10.1016/0001-8708(78)90087-7. doi: 10.1016/0001-8708(78)90087-7 |
[23] | G. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory VIII: Finite operator calculus, J. Math. Anal. Appl., 42 (1973), 684-760. doi:10.1016/0022-247X(73)90172-8. doi: 10.1016/0022-247X(73)90172-8 |
[24] | R. Mullin, G. C. Rota, On the foundations of combinatorial theory III. Theory of binomial enumeration, In: B. Harris, Ed., Graph Theory and its Applications, Academic Press, 1970,167–213. |
[25] | L. W. Shapiro, S. Getu, W. J. Woan, L. Woodson, The Riordan group, Discrete Appl. Math., 34 (1991), 229–239. doi:10.1016/0166-218X(91)90088-E. doi: 10.1016/0166-218X(91)90088-E |
[26] | T. X. He, L. C. Hsu, P. J. S. Shiue, The Sheffer group and the Riordan group, Discrete Appl. Math., 155 (2007), 1895–1909. doi:10.1016/j.dam.2007.04.006. doi: 10.1016/j.dam.2007.04.006 |
[27] | R. P. Stanley, Enumerative Combinatorics., Vol.2, Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999,581. |
[28] | Y. Simsek, Special Numbers and Polynomials Including Their Generating Functions in Umbral Analysis Methods, Axioms, 7 (2018), 22. doi:10.3390/axioms7020022. doi: 10.3390/axioms7020022 |
[29] | W. Zang, L. Chen, On the Catran numbers and some of theire identities, Symmetry, 2019 (2019), 62. doi:10.3390/sym11010062. doi: 10.3390/sym11010062 |
[30] | D. S. Kim, T. Kim, Degenerate Bernstein polynomials. RACSAM 113 (2019), 2913–2920. doi:10.1007/s13398-018-0594-9. doi: 10.1007/s13398-018-0594-9 |
[31] | T. Kim, D. S. Kim, J. Kwon, H. Lee, A note on degenerate gamma random variables, Revista Edu., 388 (2020), 39–44. |