Research article Special Issues

Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $

  • Received: 02 July 2023 Revised: 07 August 2023 Accepted: 22 August 2023 Published: 31 August 2023
  • MSC : 11S80, 11B68, 11B83

  • The aim of this paper is to introduce several degenerate hyperbolic functions as degenerate versions of the hyperbolic functions, to evaluate Volkenborn and the fermionic $ p $-adic integrals of the degenerate hyperbolic cosine and the degenerate hyperbolic sine functions and to derive from them some identities involving the degenerate Bernoulli numbers, the degenerate Euler numbers and the Cauchy numbers of the first kind.

    Citation: Taekyun Kim, Hye Kyung Kim, Dae San Kim. Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $[J]. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298

    Related Papers:

  • The aim of this paper is to introduce several degenerate hyperbolic functions as degenerate versions of the hyperbolic functions, to evaluate Volkenborn and the fermionic $ p $-adic integrals of the degenerate hyperbolic cosine and the degenerate hyperbolic sine functions and to derive from them some identities involving the degenerate Bernoulli numbers, the degenerate Euler numbers and the Cauchy numbers of the first kind.



    加载中


    [1] S. Araci, M. Acikgoz, K. H. Park, H. Jolany, On the unification of two families of multiple twisted type polynomials by using $p$-adic $q$-integral at $q = -1$, Bull. Malays. Math. Sci. Soc., 37 (2014), 543–554.
    [2] S. Araci, D. Erdal, J. J. Seo, A study on the fermionic $p$-adic $q$-integral representation on $\mathbb{Z}_p$ associated with weighted $q$-Bernstein and $q$-Genocchi polynomials, Abstr. Appl. Anal., 2011 (2011), 649248. https://doi.org/10.1155/2011/649248 doi: 10.1155/2011/649248
    [3] L. Carlitz, Degenerate stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
    [4] D. V. Dolgy, J. W. Park, A note on a sum of powers of $q$-integers of skip count by k, Adv. Stud. Contemp. Math. (Kyungshang), 33 (2023), 87–93.
    [5] D. S. Kim, T. Kim, Some $p$-adic integrals on $\mathbb{Z}_p$ associated with trigonometric functions, Russ. J. Math. Phys., 25 (2018), 300–308. https://doi.org/10.1134/S1061920818030032 doi: 10.1134/S1061920818030032
    [6] D. S. Kim, T. Kim, J. Kwon, S. H. Lee, S. Park, On $\lambda$-linear functionals arising from $p$-adic integrals on $\mathbb{Z}_p$, Adv. Differ. Equ., 2021 (2021), 479. https://doi.org/10.1186/s13662-021-03634-z doi: 10.1186/s13662-021-03634-z
    [7] T. Kim, On the analogs of Euler numbers and polynomials associated with $p$-adic $q$-integral on $\mathbb{Z}_p$ at $q = -1$, J. Math. Anal. Appl., 331 (2007), 779–792. https://doi.org/10.1016/j.jmaa.2006.09.027 doi: 10.1016/j.jmaa.2006.09.027
    [8] T. Kim, $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals, J. Nonlinear Math. Phys., 14 (2007), 15–27. https://doi.org/10.2991/jnmp.2007.14.1.3 doi: 10.2991/jnmp.2007.14.1.3
    [9] T. Kim, D. S. Kim, Some identities on degenerate $r$-Stirling numbers via Boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094
    [10] T. Kim, D. S. Kim, Some identities involving degenerate stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041
    [11] T. Kim, D. S. Kim, J. W. Park, Fully degenerate Bernoulli numbers and polynomials, Demonstr. Math., 55 (2022), 604–614. https://doi.org/10.1515/dema-2022-0160 doi: 10.1515/dema-2022-0160
    [12] J. Kwon, W. J. Kim, S. H. Rim, On the some identities of the type 2 Daehee and Changhee polynomials arising from $p$-adic integrals on $\mathbb{Z}_p$, Proc. Jangjeon Math. Soc., 22 (2019), 487–497.
    [13] W. H. Schikhof, Ultrametric Calculus: An Introduction to $p$-adic Analysis, Cambridge: Cambridge University Press, 1984.
    [14] K. Shiratani, On some operators for $p$-adic uniformly differentiable functions, Japan. J. Math., 2 (1976), 343–353. https://doi.org/10.4099/math1924.2.343 doi: 10.4099/math1924.2.343
    [15] K. Shiratani, S. Yokoyama, An application of $p$-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A, 36 (1982), 73–83. https://doi.org/10.2206/kyushumfs.36.73 doi: 10.2206/kyushumfs.36.73
    [16] C. F. Woodcock, An invariant $p$-adic integral on $\mathbb{Z}_p$, J. London Math. Soc., 8 (1974), 731–734.
    [17] C. F. Woodcock, Fourier analysis for $p$-adic Lipschitz functions, J. London Math. Soc., 7 (1974), 681–693.
    [18] S. J. Yun, J. W. Park, On fully degenerate Daehee numbers and polynomials of the second kind, J. Math., 2020 (2020), 7893498. https://doi.org/10.1155/2020/7893498 doi: 10.1155/2020/7893498
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1166) PDF downloads(215) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog