The aim of this paper is to introduce several degenerate hyperbolic functions as degenerate versions of the hyperbolic functions, to evaluate Volkenborn and the fermionic $ p $-adic integrals of the degenerate hyperbolic cosine and the degenerate hyperbolic sine functions and to derive from them some identities involving the degenerate Bernoulli numbers, the degenerate Euler numbers and the Cauchy numbers of the first kind.
Citation: Taekyun Kim, Hye Kyung Kim, Dae San Kim. Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $[J]. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298
The aim of this paper is to introduce several degenerate hyperbolic functions as degenerate versions of the hyperbolic functions, to evaluate Volkenborn and the fermionic $ p $-adic integrals of the degenerate hyperbolic cosine and the degenerate hyperbolic sine functions and to derive from them some identities involving the degenerate Bernoulli numbers, the degenerate Euler numbers and the Cauchy numbers of the first kind.
[1] | S. Araci, M. Acikgoz, K. H. Park, H. Jolany, On the unification of two families of multiple twisted type polynomials by using $p$-adic $q$-integral at $q = -1$, Bull. Malays. Math. Sci. Soc., 37 (2014), 543–554. |
[2] | S. Araci, D. Erdal, J. J. Seo, A study on the fermionic $p$-adic $q$-integral representation on $\mathbb{Z}_p$ associated with weighted $q$-Bernstein and $q$-Genocchi polynomials, Abstr. Appl. Anal., 2011 (2011), 649248. https://doi.org/10.1155/2011/649248 doi: 10.1155/2011/649248 |
[3] | L. Carlitz, Degenerate stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88. |
[4] | D. V. Dolgy, J. W. Park, A note on a sum of powers of $q$-integers of skip count by k, Adv. Stud. Contemp. Math. (Kyungshang), 33 (2023), 87–93. |
[5] | D. S. Kim, T. Kim, Some $p$-adic integrals on $\mathbb{Z}_p$ associated with trigonometric functions, Russ. J. Math. Phys., 25 (2018), 300–308. https://doi.org/10.1134/S1061920818030032 doi: 10.1134/S1061920818030032 |
[6] | D. S. Kim, T. Kim, J. Kwon, S. H. Lee, S. Park, On $\lambda$-linear functionals arising from $p$-adic integrals on $\mathbb{Z}_p$, Adv. Differ. Equ., 2021 (2021), 479. https://doi.org/10.1186/s13662-021-03634-z doi: 10.1186/s13662-021-03634-z |
[7] | T. Kim, On the analogs of Euler numbers and polynomials associated with $p$-adic $q$-integral on $\mathbb{Z}_p$ at $q = -1$, J. Math. Anal. Appl., 331 (2007), 779–792. https://doi.org/10.1016/j.jmaa.2006.09.027 doi: 10.1016/j.jmaa.2006.09.027 |
[8] | T. Kim, $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals, J. Nonlinear Math. Phys., 14 (2007), 15–27. https://doi.org/10.2991/jnmp.2007.14.1.3 doi: 10.2991/jnmp.2007.14.1.3 |
[9] | T. Kim, D. S. Kim, Some identities on degenerate $r$-Stirling numbers via Boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094 |
[10] | T. Kim, D. S. Kim, Some identities involving degenerate stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[11] | T. Kim, D. S. Kim, J. W. Park, Fully degenerate Bernoulli numbers and polynomials, Demonstr. Math., 55 (2022), 604–614. https://doi.org/10.1515/dema-2022-0160 doi: 10.1515/dema-2022-0160 |
[12] | J. Kwon, W. J. Kim, S. H. Rim, On the some identities of the type 2 Daehee and Changhee polynomials arising from $p$-adic integrals on $\mathbb{Z}_p$, Proc. Jangjeon Math. Soc., 22 (2019), 487–497. |
[13] | W. H. Schikhof, Ultrametric Calculus: An Introduction to $p$-adic Analysis, Cambridge: Cambridge University Press, 1984. |
[14] | K. Shiratani, On some operators for $p$-adic uniformly differentiable functions, Japan. J. Math., 2 (1976), 343–353. https://doi.org/10.4099/math1924.2.343 doi: 10.4099/math1924.2.343 |
[15] | K. Shiratani, S. Yokoyama, An application of $p$-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A, 36 (1982), 73–83. https://doi.org/10.2206/kyushumfs.36.73 doi: 10.2206/kyushumfs.36.73 |
[16] | C. F. Woodcock, An invariant $p$-adic integral on $\mathbb{Z}_p$, J. London Math. Soc., 8 (1974), 731–734. |
[17] | C. F. Woodcock, Fourier analysis for $p$-adic Lipschitz functions, J. London Math. Soc., 7 (1974), 681–693. |
[18] | S. J. Yun, J. W. Park, On fully degenerate Daehee numbers and polynomials of the second kind, J. Math., 2020 (2020), 7893498. https://doi.org/10.1155/2020/7893498 doi: 10.1155/2020/7893498 |