This study investigates the weak convergence of the sequences generated by the inertial relaxed $ CQ $ algorithm with Mann's iteration for solving the split feasibility problem in real Hilbert spaces. Moreover, we present the advantage of our algorithm by choosing a wider range of parameters than the recent methods. Finally, we apply our algorithm to solve the classification problem using the heart disease dataset collected from the UCI machine learning repository as a training set. The result shows that our algorithm performs better than many machine learning methods and also extreme learning machine with fast iterative shrinkage-thresholding algorithm (FISTA) and inertial relaxed $ CQ $ algorithm (IRCQA) under consideration according to accuracy, precision, recall, and F1-score.
Citation: Suthep Suantai, Pronpat Peeyada, Andreea Fulga, Watcharaporn Cholamjiak. Heart disease detection using inertial Mann relaxed $ CQ $ algorithms for split feasibility problems[J]. AIMS Mathematics, 2023, 8(8): 18898-18918. doi: 10.3934/math.2023962
This study investigates the weak convergence of the sequences generated by the inertial relaxed $ CQ $ algorithm with Mann's iteration for solving the split feasibility problem in real Hilbert spaces. Moreover, we present the advantage of our algorithm by choosing a wider range of parameters than the recent methods. Finally, we apply our algorithm to solve the classification problem using the heart disease dataset collected from the UCI machine learning repository as a training set. The result shows that our algorithm performs better than many machine learning methods and also extreme learning machine with fast iterative shrinkage-thresholding algorithm (FISTA) and inertial relaxed $ CQ $ algorithm (IRCQA) under consideration according to accuracy, precision, recall, and F1-score.
[1] | F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155 |
[2] | P. K. Anh, N. T. Vinh, V. T. Dung, A new self-adaptive CQ algorithm with an application to the LASSO problem, J. Fixed Point Theory Appl., 20 (2018), 142. https://doi.org/10.1007/s11784-018-0620-8 doi: 10.1007/s11784-018-0620-8 |
[3] | Q. H. Ansari, A. Rehan, Split feasibility and fixed point problems, In: Nonlinear analysis, New Delhi: Birkhäuser, 2014,281–322. https://doi.org/10.1007/978-81-322-1883-8_9 |
[4] | K. Aravinthan, M. Vanitha, A comparative study on prediction of heart disease using cluster and rank based approach, International Journal of Advanced Research in Computer and Communication Engineering, 5 (2016), 421–424. |
[5] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542 |
[6] | R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, P. Singh, Prediction of heart disease using a combination of machine learning and deep learning, Comput. Intell. Neurosci., 2021 (2021), 8387680. https://doi.org/10.1155/2021/8387680 doi: 10.1155/2021/8387680 |
[7] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse probl., 18 (2002), 441. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310 |
[8] | Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692 |
[9] | Y. T. Chow, Y. Deng, Y. He, H. Liu, X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946–975. https://doi.org/10.1137/20M1388498 doi: 10.1137/20M1388498 |
[10] | Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383–1394. https://doi.org/10.3934/jimo.2016078 doi: 10.3934/jimo.2016078 |
[11] | Department of Disease Control, the department of disease control joins the campaign for world heart day, 2021. Available from: https://ddc.moph.go.th/brc/news.php?news = 20876 & deptcode = brc & fbclid = \IwAR2GSqs1NVuYuGfmO4kOsUElK0T4ZOyRFnmbty2aZ_rnQ7Xc3jmhu6DIMSk. |
[12] | Q. L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, T. M. Rassias, MiKM: multi-step inertial Krasnosel'skiǐ–Mann algorithm and its applications, J. Glob. Optim., 73 (2019), 801–824. https://doi.org/10.1007/s10898-018-0727-x doi: 10.1007/s10898-018-0727-x |
[13] | Q. L. Dong, X. H. Li, D. Kitkuan, Y. J. Cho, P. Kumam, Some algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimization, J. Inequal. Appl., 2019 (2019), 77. https://doi.org/10.1186/s13660-019-2030-x doi: 10.1186/s13660-019-2030-x |
[14] | Q. L. Dong, Y. C. Tang, Y. J. Cho, T. M. Rassias, "Optimal" choice of the step length of the projection and contraction methods for solving the split feasibility problem, J. Glob. Optim., 71 (2018), 341–360. https://doi.org/10.1007/s10898-018-0628-z doi: 10.1007/s10898-018-0628-z |
[15] | D. Dua, C. Graff, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2019. Available from: http://archive.ics.uci.edu/ml. |
[16] | Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771 |
[17] | A. Gibali, D. V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 49. https://doi.org/10.1007/s10092-018-0292-1 doi: 10.1007/s10092-018-0292-1 |
[18] | J. Han, M. Kamber, J. Pei, Data mining: concepts and techniques, Waltham, MA: Morgan Kaufman Publishers, 2012. |
[19] | W. Jirakitpuwapat, P. Kumam, Y. J. Cho, K. Sitthithakerngkiet, A general algorithm for the split common fixed point problem with its applications to signal processing, Mathematics, 7 (2019), 226. https://doi.org/10.3390/math7030226 doi: 10.3390/math7030226 |
[20] | V. A. Kumari, R. Chitra, Classification of diabetes disease using support vector machine, International Journal of Engineering Research and Applications, 3 (2013), 1797–1801. |
[21] | J. Liang, T. Luo, C. B. Schonlieb, Improving "fast iterative Shrinkage-Thresholding algorithm": faster, smarter, and greedier, SIAM J. Sci. Comput., 44 (2022), A1069–A1091. https://doi.org/10.1137/21M1395685 doi: 10.1137/21M1395685 |
[22] | , V. Mart$\acute{i}$n-M$\acute{a}$rquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 085004. https://doi.org/10.1088/0266-5611/28/8/085004 doi: 10.1088/0266-5611/28/8/085004 |
[23] | Z. Ma, L. Wang, Y. J. Cho, Some results for split equality equilibrium problems in Banach spaces, Symmetry, 11 (2019), 194. https://doi.org/10.3390/sym11020194 doi: 10.3390/sym11020194 |
[24] | P. E. Maing$\acute{ e }$, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set-Valued Anal., 15 (2007), 67–79. https://doi.org/10.1007/s11228-006-0027-3 doi: 10.1007/s11228-006-0027-3 |
[25] | Y. E. E. Nesterov, A method of solving a convex programming problem with convergence rate O$(1/k^2)$, Dokl. Akad. Nauk SSSR., 269 (1983), 543–547. |
[26] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
[27] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[28] | D. R. Sahu, Y. J. Cho, Q. L. Dong, M. R. Kashyap, X. H. Li, Inertial relaxed $CQ$ algorithms for solving a split feasibility problem in Hilbert spaces, Numer. Algor., 87 (2021), 1075–1095. https://doi.org/10.1007/s11075-020-00999-2 doi: 10.1007/s11075-020-00999-2 |
[29] | P. Sarnmeta, W. Inthakon, D. Chumpungam, S. Suantai, On convergence and complexity analysis of an accelerated forward–backward algorithm with linesearch technique for convex minimization problems and applications to data prediction and classification, J. Inequal. Appl., 2021 (2021), 141. https://doi.org/10.1186/s13660-021-02675-y doi: 10.1186/s13660-021-02675-y |
[30] | Y. Shehu, A. Gibali, New inertial relaxed method for solving split feasibilities, Optim. Lett., 15 (2021), 2109–2126. https://doi.org/10.1007/s11590-020-01603-1 doi: 10.1007/s11590-020-01603-1 |
[31] | J. S. Sonawane, D. R. Patil, Prediction of heart disease using learning vector quantization algorithm, In: 2014 Conference on IT in Business, Industry and Government (CSIBIG), Indore, India, 2014, 1–5. https://doi.org/10.1109/CSIBIG.2014.7056973 |
[32] | S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506–517. https://doi.org/10.1016/j.jmaa.2005.03.002 doi: 10.1016/j.jmaa.2005.03.002 |
[33] | S. Suantai, N. Pholasa, P. Cholamjiak, Relaxed $CQ$ algorithms involving the inertial technique for multiple-sets split feasibility problems, RACSAM, 113 (2019), 1081–1099. https://doi.org/10.1007/s13398-018-0535-7 doi: 10.1007/s13398-018-0535-7 |
[34] | S. Suantai, S. Kesornprom, P. Cholamjiak, A new hybrid $CQ$ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing, Mathematics, 7 (2019), 789. https://doi.org/10.3390/math7090789 doi: 10.3390/math7090789 |
[35] | N. T. Vinh, P. Cholamjiak, S. Suantai, A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 2517–2534. https://doi.org/10.1007/s40840-018-0614-0 doi: 10.1007/s40840-018-0614-0 |
[36] | F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numer. Algor., 77 (2018), 925–938. https://doi.org/10.1007/s11075-017-0347-4 doi: 10.1007/s11075-017-0347-4 |
[37] | X. Wang, Y. Guo, D. Zhang, H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Probl., 33 (2017), 035001. https://doi.org/10.1088/1361-6420/aa573c doi: 10.1088/1361-6420/aa573c |
[38] | U. Witthayarat, Y. J. Cho, P. Cholamjiak, On solving proximal split feasibility problems and applications, Ann. Funct. Anal., 9 (2018), 111–122. https://doi.org/10.1215/20088752-2017-0028 doi: 10.1215/20088752-2017-0028 |
[39] | World Health Organization, Cardiovascular diseases (CVDs), World Health Organization (WHO), 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). |
[40] | H. K. Xu, Iterative methods for solving the split feasibility in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018 |
[41] | Q. Yang, On variable-step relaxed projection algorithm for variational inequalities, J. Math. Anal. Appl., 302 (2005), 166–179. https://doi.org/10.1016/j.jmaa.2004.07.048 doi: 10.1016/j.jmaa.2004.07.048 |
[42] | W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594 |
[43] | J. Zhao, Y. Liang, Y. Liu, Y. J. Cho, Split equilibrium, variational inequality and fixed point problems for multi-valued mappings in Hilbert spaces, Appl. Comput. Math., 17 (2018), 271–283. |