Research article Special Issues

Ranking of linear Diophantine fuzzy numbers using circumcenter of centroids

  • Received: 20 December 2022 Revised: 03 February 2023 Accepted: 13 February 2023 Published: 22 February 2023
  • MSC : 03E72

  • This paper generically introduces a new notion of trapezoidal linear Diophantine fuzzy numbers in general (TrapLDFNs). We begin by introducing the concept of TrapLDFNs. Then, we propose a ranking method for TrapLDFNs relying on the circumcenter of centroids of TrapLDFN membership and non-membership functions.

    Citation: Salma Iqbal, Naveed Yaqoob. Ranking of linear Diophantine fuzzy numbers using circumcenter of centroids[J]. AIMS Mathematics, 2023, 8(4): 9840-9861. doi: 10.3934/math.2023497

    Related Papers:

  • This paper generically introduces a new notion of trapezoidal linear Diophantine fuzzy numbers in general (TrapLDFNs). We begin by introducing the concept of TrapLDFNs. Then, we propose a ranking method for TrapLDFNs relying on the circumcenter of centroids of TrapLDFN membership and non-membership functions.



    加载中


    [1] S. Abbasbandy, T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers, Comput. Math. Appl., 57 (2009), 413–419. https://doi.org/10.1016/j.camwa.2008.10.090 doi: 10.1016/j.camwa.2008.10.090
    [2] M. Akram, m-Polar fuzzy graphs: Theory, methods and applications, Fuzziness and Soft Computing, Springer, 371 (2019), 1–296. https://doi.org/10.1007/978-3-030-03751-2
    [3] J. Ali, H. Garg, On spherical fuzzy distance measure and TAOV method for decision-making problems with incomplete weight information, Eng. Appl. Artif. Intell., 119 (2023), 105726. https://doi.org/10.1016/j.engappai.2022.105726 doi: 10.1016/j.engappai.2022.105726
    [4] J. Ali, M. Naeem, Multi-criteria decision-making method based on complex t-spherical fuzzy Aczel-Alsina aggregation operators and their application, Symmetry, 15 (2022), 85. https://doi.org/10.3390/sym15010085 doi: 10.3390/sym15010085
    [5] J. Ali, A q-rung orthopair fuzzy MARCOS method using novel score function and its application to solid waste management, Appl. Intell., 52 (2022), 8770–8792. https://doi.org/10.1007/s10489-021-02921-2 doi: 10.1007/s10489-021-02921-2
    [6] J. Ali, M. Naeem, Cosine similarity measures between q-rung orthopair linguistic sets and their application to group decision making problems, Sci. Rep., 12 (2022), 14456. https://doi.org/10.1038/s41598-022-18694-8 doi: 10.1038/s41598-022-18694-8
    [7] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Amb. Intell. Hum. Comp., 13 (2022), 1687–1713. https://doi.org/10.1007/s12652-021-03130-y doi: 10.1007/s12652-021-03130-y
    [8] P. P. Angelov, Optimization in an intuitionistic fuzzy environment, Fuzzy Set. Syst., 86 (1997), 299–306. https://doi.org/10.1016/S0165-0114(96)00009-7 doi: 10.1016/S0165-0114(96)00009-7
    [9] A. Ashraf, K. Ullah, A. Hussain, M. Bari, Interval-valued picture fuzzy maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 210–226. https://doi.org/10.31181/rme20020042022a doi: 10.31181/rme20020042022a
    [10] K. T. Atanasov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [11] S. Ayub, M. Shabir, M. Riaz, M. Aslam, R. Chinram, Linear Diophantine fuzzy relations and their algebraic properties with decision making, Symmetry, 13 (2021), 945. https://doi.org/10.3390/sym13060945 doi: 10.3390/sym13060945
    [12] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci., 17 (1970), B-141. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [13] S. K. Bharati, S. R. Singh, Solving multi objective linear programming problems using intuitionistic fuzzy optimization method: A comparative study, Int. J. Model. Optim., 4 (2014), 1–7. https://doi.org/10.7763/IJMO.2014.V4.339 doi: 10.7763/IJMO.2014.V4.339
    [14] S. K. Bharati, S. R. Singh, A note on solving a fully intuitionistic fuzzy linear programming problem based on sign distance, Int. J. Comput. Appl., 119 (2015), 30–35. https://doi.org/10.5120/21379-4347 doi: 10.5120/21379-4347
    [15] S. K. Bharati, R. Malhotra, Two stage intuitionistic fuzzy time minimizing transportation problem based on generalized Zadeh's extension principle, Int. J. Syst. Assur. Eng., 8 (2017), 1442–1449. https://doi.org/10.1007/s13198-017-0613-9 doi: 10.1007/s13198-017-0613-9
    [16] J. Chen, S. Li, S. Ma, X. Wang, m-Polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 1–8. https://doi.org/10.1155/2014/416530 doi: 10.1155/2014/416530
    [17] K. P. Chiao, Characteristic value of fuzzy number defined with parameter integral form, Proc. Nineth Nat. Conf. Fuzzy Theo. Appl., 2000.
    [18] A. K. Das, C. Granados, FP-Intuitionistic multi-fuzzy N-soft set and its induced FP-Hesitant N soft set in decision-making, Decis. Mak. Appl. Manag. Eng., 5 (2022), 67–89. https://doi.org/10.31181/dmame181221045d doi: 10.31181/dmame181221045d
    [19] P. K. De, D. Das, A study on ranking of trapezoidal intuitionistic fuzzy numbers, Int. J. Comput. Inf. Sys. Indust. Manag. Appl., 6 (2014), 437–444.
    [20] D. Dubey, S. Chandra, A. Mehra, Fuzzy linear programming under interval uncertainty based on IFS representation, Fuzzy Set. Syst., 188 (2012), 68–87. https://doi.org/10.1016/j.fss.2011.09.008 doi: 10.1016/j.fss.2011.09.008
    [21] A. Ebrahimnejad, J. L. Verdegay, Fuzzy sets-based methods and techniques for modern analytics, Springer, Switzerland, 364 (2018). https://doi.org/10.1007/978-3-319-73903-8
    [22] M. Esmailzadeh, M. Esmailzadeh, New distance between triangular intuitionistic fuzzy numbers, Adv. Comput. Math. Appl., 2 (2013), 310–314
    [23] H. M. A. Farid, R. Kausar, M. Riaz, D. Marinkovic, M. Stankovic, Linear Diophantine fuzzy fairly averaging operator for suitable biomedical material selection, Axioms, 11 (2022), 735. https://doi.org/10.3390/axioms11120735 doi: 10.3390/axioms11120735
    [24] A. H. Ganesh, M. Suresh, Ordering of generalised trapezoidal fuzzy numbers based on area method using euler line of centroids, Adv. Fuzzy Math., 12 (2017), 783–791.
    [25] H. Garg, A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes, Int. J. Intel. Syst., 31 (2016), 1234–1252. https://doi.org/10.1002/int.21827 doi: 10.1002/int.21827
    [26] P. Grzegorzewski, Distances and orderings in a family of intuitionistic fuzzy numbers, EUSFLAT Conf., 2003,223–227.
    [27] P. Gupta, M. K. Mehlawat, F. Ahemad, An MAGDM approach with q-rung orthopair trapezoidal fuzzy information for waste disposal site selection problem, Int. J. Intel. Syst., 36 (2021), 4524–4559. https://doi.org/10.1002/int.22468 doi: 10.1002/int.22468
    [28] M. R. Hashmi, S. T. Tehrim, M. Riaz, D. Pamucar, G. Cirovic, Spherical linear diophantine fuzzy soft rough sets with multi-criteria decision making, Axioms, 10 (2021), 185. https://doi.org/10.3390/axioms10030185 doi: 10.3390/axioms10030185
    [29] A. Iampan, G. S. García, M. Riaz, H. M. A. Farid, R. Chinram, Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., 2021 (2021), 1–31. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
    [30] B. Jana, T. K. Roy, Multi-objective intuitionistic fuzzy linear programming and its application in transportation model, Notes Intuition. Fuzzy Set., 13 (2007), 34–51.
    [31] H. Kamac, Linear Diophantine fuzzy algebraic structures, J. Amb. Intell. Hum. Comp., 12 (2021), 10353–10373. https://doi.org/10.1007/s12652-020-02826-x doi: 10.1007/s12652-020-02826-x
    [32] N. Khan, N. Yaqoob, M. Shams, Y. U. Gaba, M. Riaz, Solution of linear and quadratic equations based on triangular linear diophantine fuzzy numbers, J. Funct. Space., 2021 (2021), 1–14. https://doi.org/10.1155/2021/8475863 doi: 10.1155/2021/8475863
    [33] A. Kumar, M. Kaur, A ranking approach for intuitionistic fuzzy numbers and its application, J. Appl. Res. Technol., 11 (2013), 381–396. https://doi.org/10.1016/S1665-6423(13)71548-7 doi: 10.1016/S1665-6423(13)71548-7
    [34] D. F. Li, A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems, Comput. Math. Appl., 60 (2010), 1557–1570. https://doi.org/10.1016/j.camwa.2010.06.039 doi: 10.1016/j.camwa.2010.06.039
    [35] G. S. Mahapatra, M. Mitra, T. K. Roy, Intuitionistic fuzzy multi-objective mathematical programming on reliability optimization model, Int. J. Fuzzy Syst., 12 (2010), 259–266. https://doi.org/10.30000/IJFS.201009.0010 doi: 10.30000/IJFS.201009.0010
    [36] T. Mahmood, I. Haleemzai, Z. Ali, D. Pamucar, D. Marinkovic, Power Muirhead mean operators for interval-valued linear Diophantine fuzzy sets and their application in decision-making strategies, Mathematics, 10 (2021), 70. https://doi.org/10.3390/math10010070 doi: 10.3390/math10010070
    [37] H. B. Mitchell, Ranking-intuitionistic fuzzy numbers, Int. J. Uncertain. Fuzz., 12 (2004), 377–386. https://doi.org/10.1142/S0218488504002886 doi: 10.1142/S0218488504002886
    [38] M. M. S. Mohammad, S. Abdullah, M. M. Al-Shomrani, Some linear Diophantine fuzzy similarity measures and their application in decision making problem, IEEE Access, 10 (2022), 29859–29877. https://doi.org/10.1109/ACCESS.2022.3151684 doi: 10.1109/ACCESS.2022.3151684
    [39] S. Mukherjee, K. Basu, Solution of a class of intuitionistic fuzzy assignment problem by using similarity measures, Knowl.-Based Syst., 27 (2012), 170–179. https://doi.org/10.1016/j.knosys.2011.09.007 doi: 10.1016/j.knosys.2011.09.007
    [40] S. H. Nasseri, N. Taghi-Nezhad, A. Ebrahimnejad, A note on ranking fuzzy numbers with an area method using circumcenter of centroids, Fuzzy Inform. Eng., 9 (2017), 259–268. https://doi.org/10.1016/j.fiae.2017.06.009 doi: 10.1016/j.fiae.2017.06.009
    [41] V. L. G. Nayagam, S. Jeevaraj, G. Sivaraman, Complete ranking of intuitionistic fuzzy numbers, Fuzzy Inform. Eng., 8 (2016), 237–254. https://doi.org/10.1016/j.fiae.2016.06.007 doi: 10.1016/j.fiae.2016.06.007
    [42] H. M. Nehi, A new ranking method for intuitionistic fuzzy numbers, Int. J. Fuzzy Syst., 12 (2010), 80–86.
    [43] A. K. Nishad, S. K. Bharati, S. R. Singh, A new centroid method of ranking for intuitionistic fuzzy numbers, Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), Springer, New Delhi, 236 (2014), 151–159.
    [44] G. A. Papakostas, A. G. Hatzimichailidis, V. G. Kaburlasos, Distance and similarity measures between intuitionistic fuzzy sets: A comparative analysis from a pattern recognition point of view, Pattern Recogn. Lett., 34 (2013), 1609–1622. https://doi.org/10.1016/j.patrec.2013.05.015 doi: 10.1016/j.patrec.2013.05.015
    [45] K. A. Prakash, M. Suresh, S.Vengataasalam, A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept, Math. Sci., 10 (2016), 177–184. https://doi.org/10.1007/s40096-016-0192-y doi: 10.1007/s40096-016-0192-y
    [46] P. Rao, N. R. Shankar, Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality, Adv. Fuzzy Syst., 2011 (2011), 1–7. https://doi.org/10.1155/2011/178308 doi: 10.1155/2011/178308
    [47] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intel. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [48] M. Riaz, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-party logistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. http://dx.doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r
    [49] J. Ramesh, Decision making in the presence of fuzzy variables, IEEE Trans. Syst. Man Cybern. Syst., 6 (1976), 698–703. https://doi.org/10.1109/TSMC.1976.4309421 doi: 10.1109/TSMC.1976.4309421
    [50] S. S. Roseline, E. C. H. Amirtharaj, A new ranking of intuitionistic fuzzy numbers with distance method based on the circumcenter of centroids, Int. J. Appl. Math., 2 (2013), 37–44.
    [51] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [52] X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (Ⅰ), Fuzzy Set. Syst., 118 (2001), 375–385. https://doi.org/10.1016/S0165-0114(99)00062-7 doi: 10.1016/S0165-0114(99)00062-7
    [53] W. Wang, X. Xin, Distance measure between intuitionistic fuzzy sets, Pattern Recogn. Lett., 26 (2005), 2063–2069. https://doi.org/10.1016/j.patrec.2005.03.018 doi: 10.1016/j.patrec.2005.03.018
    [54] R. R. Yager, Pythagorean fuzzy subsets, In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, Canada, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [55] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [56] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [57] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intellige, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1260) PDF downloads(56) Cited by(5)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog