Research article

On $ \left(\mathit{p}, \mathit{q}\right) $-fractional linear Diophantine fuzzy sets and their applications via MADM approach

  • Received: 02 October 2024 Revised: 09 December 2024 Accepted: 11 December 2024 Published: 20 December 2024
  • MSC : 03B52, 03E72, 28E10, 68T27, 94D05

  • The integration of internationally sustainable practices into supply chain management methodologies is known as "green supply chain management". Reducing the supply chain's overall environmental impact is the main objective in order to improve corporate connections and the social, ecological, and economic ties with other nations. To accomplish appropriate and accurate measures to address the issue of emergency decision-making, the paper is divided into three major sections. First, the $ \left(p, q\right) $-fractional linear Diophantine fuzzy set represents a new generalization of several fuzzy set theories, including the Pythagorean fuzzy set, $ q $-rung orthopair fuzzy set, linear Diophantine fuzzy set, and $ q $-rung linear Diophantine fuzzy set, with its key features thoroughly discussed. Additionally, aggregation operators are crucial for handling uncertainty in decision-making scenarios. Consequently, algebraic norms for $ \left(p, q\right) $-fractional linear Diophantine fuzzy sets were established based on operational principles. In the second part of the study, we introduced a range of geometric aggregation operators and a series of averaging operators under the $ \left(p, q\right) $-fractional linear Diophantine fuzzy set, all grounded in established operational rules. We also explained some flexible aspects for the invented operators. Furthermore, using the newly developed operators for $ \left(p, q\right) $-fractional linear Diophantine fuzzy information, we constructed the multi-attribute decision-making ($ MADM $) technique to assess the green supply chain management challenge. Last, we compared the ranking results of the produced approaches with the obtained ranking results of the techniques using several numerical instances to demonstrate the validity and superiority of the developed techniques. Finally, a few comparisons between the findings were made.

    Citation: Hanan Alohali, Muhammad Bilal Khan, Jorge E. Macías-Díaz, Fahad Sikander. On $ \left(\mathit{p}, \mathit{q}\right) $-fractional linear Diophantine fuzzy sets and their applications via MADM approach[J]. AIMS Mathematics, 2024, 9(12): 35503-35532. doi: 10.3934/math.20241685

    Related Papers:

  • The integration of internationally sustainable practices into supply chain management methodologies is known as "green supply chain management". Reducing the supply chain's overall environmental impact is the main objective in order to improve corporate connections and the social, ecological, and economic ties with other nations. To accomplish appropriate and accurate measures to address the issue of emergency decision-making, the paper is divided into three major sections. First, the $ \left(p, q\right) $-fractional linear Diophantine fuzzy set represents a new generalization of several fuzzy set theories, including the Pythagorean fuzzy set, $ q $-rung orthopair fuzzy set, linear Diophantine fuzzy set, and $ q $-rung linear Diophantine fuzzy set, with its key features thoroughly discussed. Additionally, aggregation operators are crucial for handling uncertainty in decision-making scenarios. Consequently, algebraic norms for $ \left(p, q\right) $-fractional linear Diophantine fuzzy sets were established based on operational principles. In the second part of the study, we introduced a range of geometric aggregation operators and a series of averaging operators under the $ \left(p, q\right) $-fractional linear Diophantine fuzzy set, all grounded in established operational rules. We also explained some flexible aspects for the invented operators. Furthermore, using the newly developed operators for $ \left(p, q\right) $-fractional linear Diophantine fuzzy information, we constructed the multi-attribute decision-making ($ MADM $) technique to assess the green supply chain management challenge. Last, we compared the ranking results of the produced approaches with the obtained ranking results of the techniques using several numerical instances to demonstrate the validity and superiority of the developed techniques. Finally, a few comparisons between the findings were made.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S00199958(65)90241-X doi: 10.1016/S00199958(65)90241-X
    [2] G. Q. Huang, L. M. Xiao, W. Pedrycz, G. B. Zhang, L. Martinez, Failure mode and effect analysis using T-spherical fuzzy maximizing deviation and combined comparison solution methods, IEEE T. Reliab., 2022, 1–22. https://doi.org/10.1109/TR.2022.3194057
    [3] A. Sotoudeh-Anvari, A critical review on theoretical drawbacks and mathematical incorrect assumptions in fuzzy OR methods: Review from 2010 to 2020, Appl. Soft Comput., 93 (2020), 106354. https://doi.org/10.1016/j.asoc.2020.106354 doi: 10.1016/j.asoc.2020.106354
    [4] L. M. Xiao, G. Q. Huang, G. B. Zhang, An integrated risk assessment method using Z-fuzzy clouds and generalized TODIM, Qual. Reliab. Eng., 38 (2022), 1909–1943. https://doi.org/10.1002/qre.3062 doi: 10.1002/qre.3062
    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [6] K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [7] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [8] M. B. Khan, A. M. Deaconu, J. Tayyebi, D. E. Spridon, Diamond intuitionistic fuzzy sets and their applications, IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3502202
    [9] H. Garg, Some series of intuitionistic fuzzy interactive averaging aggregation operators, Springer Plus, 5 (2016), 999. https://doi.org/10.1186/s40064-016-2591-9 doi: 10.1186/s40064-016-2591-9
    [10] Y. G. Xue, Y. Deng, Decision making under measure-based granular uncertainty with intuitionistic fuzzy sets, Appl. Intell., 51 (2021), 6224–6233. https://doi.org/10.1007/s10489-021-02216-6 doi: 10.1007/s10489-021-02216-6
    [11] S. M. Khalil, M. A. H. Hasab, Decision making using new distances of intuitionistic fuzzy sets and study their application in the universities, In: Intelligent and fuzzy techniques: Smart and innovative solutions, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-51156-246
    [12] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [13] Y. Zhang, X. Wang, X. Wang, H. A. Mang, Virtual displacement based discontinuity layout optimization, Int. J. Numer. Meth. Eng., 123 (2022), 5682–5694. https://doi.org/10.1002/nme.7084 doi: 10.1002/nme.7084
    [14] Y. Zhang, Z. Gao, X. Wang, Q. Liu, Image representations of numerical simulations for training neural networks, Comput. Model. Eng. Sci., 134 (2023), 821–833. https://doi.org/10.32604/cmes.2022.022088 doi: 10.32604/cmes.2022.022088
    [15] B. Farhadinia, Similarity-based multi-criteria decision making technique of pythagorean fuzzy set, Artif. Intell. Rev., 55 (2022), 2103–2148. https://doi.org/10.1007/s10462-021-10054-8 doi: 10.1007/s10462-021-10054-8
    [16] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [17] H. Garg, New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications, Int. J. Intell. Syst., 34 (2019), 82–106. https://doi.org/10.1002/int.22043 doi: 10.1002/int.22043
    [18] M. J. Khan, P. Kumam, P. D. Liu, W. Kumam, S. Ashraf, A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system, Mathematics, 7 (2019), 742. https://doi.org/10.3390/math7080742 doi: 10.3390/math7080742
    [19] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
    [20] H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process, Int. J. Intell. Syst., 32 (2017), 597–630. https://doi.org/10.1002/int.21860 doi: 10.1002/int.21860
    [21] Z. M. Ma, Z. S. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems, Int. J. Intell. Syst., 31 (2016), 1198-1219. https://doi.org/10.1002/int.21823 doi: 10.1002/int.21823
    [22] S. Z. Zeng, Pythagorean fuzzy multiattribute group decision making with probabilistic information and OWAapproach, Int. J. Intell. Syst., 32 (2017), 1136–1150. https://doi.org/10.1002/int.21886 doi: 10.1002/int.21886
    [23] D. Q. Li, W. Y. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348–361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934
    [24] M. A. Firozja, B. Agheli, E. B. Jamkhaneh, A new similarity measure for Pythagorean fuzzy sets, Complex Intell. Syst., 6 (2020), 67–74. https://doi.org/10.1007/s40747-019-0114-3 doi: 10.1007/s40747-019-0114-3
    [25] S. Zhang, Y. Hou, S. Zhang, M. Zhang, Fuzzy control model and simulation for nonlinear supply chain system with lead times, Complexity, 2017 (2017), 2017634. https://doi.org/10.1155/2017/2017634 doi: 10.1155/2017/2017634
    [26] S. Zhang, S. Li, S. Zhang, M. Zhang, Decision of lead‐time compression and stable operation of supply chain, Complexity, 2017 (2017), 7436764. https://doi.org/10.1155/2017/7436764 doi: 10.1155/2017/7436764
    [27] S. Zhang, C. Zhang, S. Zhang, M. Zhang, Discrete switched model and fuzzy robust control of dynamic supply chain network, Complexity, 2018 (2018), 3495096. https://doi.org/10.1155/2018/3495096 doi: 10.1155/2018/3495096
    [28] K. Y. Bai, X. M. Zhu, J. Wang, R. T. Zhang, Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making, Symmetry, 10 (2018), 383. https://doi.org/10.3390/sym10090383 doi: 10.3390/sym10090383
    [29] O. Barukab, S. Abdullah, S. Ashraf, M. Arif, S. A. Khan, A new approach to fuzzy TOPSIS method based on entropy measure under spherical fuzzy information, Entropy, 21 (2019), 1231. https://doi.org/10.3390/e21121231 doi: 10.3390/e21121231
    [30] E. Alsuwat, S. Alzahrani, H. Alsuwat, Detecting COVID-19 utilizing probabilistic graphical models, Int. J. Adv. Comput. Sci. Appl., 12 (2021), 786–793. https://doi.org/10.14569/IJACSA.2021.0120692 doi: 10.14569/IJACSA.2021.0120692
    [31] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [32] Z. Zhao, H. Zhang, J. Shiau, W. Du, L. Ke, F. Wu, et al., Failure envelopes of rigid tripod pile foundation under combined vertical-horizontal-moment loadings in clay, Appl. Ocean Res., 150 (2024), 104131. https://doi.org/10.1016/j.apor.2024.104131 doi: 10.1016/j.apor.2024.104131
    [33] Y. Gao, Q. Liu, Y. Yang, K. Wang, Latent representation discretization for unsupervised text style generation, Inf. Process. Manag., 61 (2024), 103643. https://doi.org/10.1016/j.ipm.2024.103643 doi: 10.1016/j.ipm.2024.103643
    [34] Y. Luo, H. Zhang, Z. Chen, Q. Li, S. Ye, Q. Liu, Novel multidimensional composite development for aging resistance of SBS-modified asphalt by attaching zinc oxide on expanded vermiculite, Energ. Fuel., 38 (2024), 16772–16781. https://doi.org/10.1021/acs.energyfuels.4c02685 doi: 10.1021/acs.energyfuels.4c02685
    [35] A. Iampan, G. S. Garc, M. Riaz, H. M. A. Farid, R. Chinram, Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision making problems, J. Math., 2021 (2021), 5548033. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
    [36] S. Ayub, M. Shabir, M. Riaz, M. Aslam, R. Chinram, Linear Diophantine fuzzy relations and their algebraic properties with decision making, Symmetry, 13 (2021), 945. https://doi.org/10.3390/sym13060945 doi: 10.3390/sym13060945
    [37] T. Mahmood, Z. Ali, M. Aslam, R. Chinram, Generalized Hamacher aggregation operators based on linear Diophantine uncertain linguistic setting and their applications in decision-making problems, IEEE Access, 9 (2021), 126748–126764. https://doi.org/10.1109/ACCESS.2021.3110273 doi: 10.1109/ACCESS.2021.3110273
    [38] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024
    [39] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855
    [40] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
    [41] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [42] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 8 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
    [43] Z. Y. Xiao, Y. J. Li, W. Zhang, Y. J. Han, D. Li, Q. Chen, et al., Enhancement of torque efficiency and spin Hall angle driven collaboratively by orbital torque and spin-orbit torque, Appl. Phys. Lett., 121 (2022), 075801. https://doi.org/10.1063/5.0086125 doi: 10.1063/5.0086125
    [44] Y. Li, J. Li, C. Feng, M. Wen, Y. Zhang, An interface constitutive model of plastic tensile-compressive damage under impact loading based on continuous-discontinuous framework, Comput. Geotech., 173 (2024), 106502. https://doi.org/10.1016/j.compgeo.2024.106502 doi: 10.1016/j.compgeo.2024.106502
    [45] C. Xu, M. Zhu, Q. Wang, J. Cui, Y. Huang, X. Huang, et al., TROP2-directed nanobody-drug conjugate elicited potent antitumor effect in pancreatic cancer, J. Nanobiotechnol., 21 (2023), 410. https://doi.org/10.1186/s12951-023-02183-9 doi: 10.1186/s12951-023-02183-9
    [46] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Amb. Intell. Human. Comp., 13 (2022), 1687–1713. https://doi.org/10.1007/s12652-021-03130-y doi: 10.1007/s12652-021-03130-y
    [47] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [48] M. Qiyas, M. Naeem, S. Abdullah, N. Khan, A. Ali, Similarity measures based on q-rung linear Diophantine fuzzy sets and their application in logistics and supply chain management, J. Math., 2022 (2022), 4912964. https://doi.org/10.1155/2022/4912964 doi: 10.1155/2022/4912964
    [49] M. Gulistan, W. Pedrycz, Introduction to q-fractional fuzzy set, Int. J. Fuzzy Syst., 2024, 1–18. https://doi.org/10.1007/s40815-023-01633-8
    [50] T. Mahmood, M. Asif, U. ur Rehman, J. Ahmmad, T-bipolar soft semigroups and related results, Spectr. Mech. Eng. Oper. Res., 1 (2024), 258–271. https://doi.org/10.31181/smeor11202421 doi: 10.31181/smeor11202421
    [51] A. R. Mishra, P. Rani, F. Cavallaro, A. F. Alrasheedi, Assessment of sustainable wastewater treatment technologies using interval-valued intuitionistic fuzzy distance measure-based MAIRCA method, Facta Univ. -Ser. Mech., 21 (2023), 359–386. https://doi.org/10.22190/FUME230901034M doi: 10.22190/FUME230901034M
    [52] A. Hussain, K. Ullah, An intelligent decision support system for spherical fuzzy sugeno-weber aggregation operators and real-life applications, Spectr. Mech. Eng. Oper. Res., 1 (2024), 177–188. https://doi.org/10.31181/smeor11202415 doi: 10.31181/smeor11202415
    [53] J. Kannan, V. Jayakumar, M. Pethaperumal, Advanced fuzzy-based decision-making: the linear diophantine fuzzy CODAS method for logistic specialist selection, Spectr. Oper. Res., 2 (2025) 41–60. https://doi.org/10.31181/sor2120259 doi: 10.31181/sor2120259
    [54] P. Wang, B. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. -Ser. Mech., 21 (2023) 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
    [55] H. M. A. Farid, M. Riaz, M. J. Khan, P. Kumam, K. Sitthithakerngkiet, Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators, AIMS Math., 7 (2022), 11201–11242. https://doi.org/10.3934/math.2022627 doi: 10.3934/math.2022627
    [56] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [57] L. M. Xiao, G. Q. Huang, W. Pedrycz, D. Pamucar, L. Martınez, G. B. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Inf. Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061
    [58] S. Zhang, P. Zhang, M. Zhang, Fuzzy emergency model and robust emergency strategy of supply chain system under random supply disruptions, Complexity, 2019 (2019), 3092514. https://doi.org/10.1155/2019/3092514 doi: 10.1155/2019/3092514
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(196) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog