Research article

The discernibility approach for multi-granulation reduction of generalized neighborhood decision information systems

  • Received: 29 September 2024 Revised: 16 November 2024 Accepted: 29 November 2024 Published: 19 December 2024
  • MSC : 68T30, 68T37

  • Attribute reduction of a decision information system (DIS) using multi-granulation rough sets is one of the important applications of granular computing. Constructing discernibility matrices by rough sets to get attribute reducts of a DIS is an important reduction method. By analyzing the commonalities between the multi-granulation reduction structure of decision multi-granulation spaces and that of incomplete DISs based on discernibility tool, this paper explored a general model for the multi-granulation reduction of DISs by the discernibility technique. First, the definition of the generalized neighborhood decision information system (GNDIS) was presented. Second, knowledge reduction of GNDISs by multi-granulation rough sets was discussed, and discernibility matrices and discernibility functions were constructed to characterize multi-granulation reduction structures of GNDISs. Third, the multi-granulation reduction structures of decision multi-granulation spaces and incomplete DISs were characterized by the reduction theory of GNDISs based on discernibility. Then, the multi-granulation reduction of GNDISs by the discernibility tool provided a theoretical foundation for designing algorithms of multi-granulation reduction of DISs.

    Citation: Yanlan Zhang, Changqing Li. The discernibility approach for multi-granulation reduction of generalized neighborhood decision information systems[J]. AIMS Mathematics, 2024, 9(12): 35471-35502. doi: 10.3934/math.20241684

    Related Papers:

  • Attribute reduction of a decision information system (DIS) using multi-granulation rough sets is one of the important applications of granular computing. Constructing discernibility matrices by rough sets to get attribute reducts of a DIS is an important reduction method. By analyzing the commonalities between the multi-granulation reduction structure of decision multi-granulation spaces and that of incomplete DISs based on discernibility tool, this paper explored a general model for the multi-granulation reduction of DISs by the discernibility technique. First, the definition of the generalized neighborhood decision information system (GNDIS) was presented. Second, knowledge reduction of GNDISs by multi-granulation rough sets was discussed, and discernibility matrices and discernibility functions were constructed to characterize multi-granulation reduction structures of GNDISs. Third, the multi-granulation reduction structures of decision multi-granulation spaces and incomplete DISs were characterized by the reduction theory of GNDISs based on discernibility. Then, the multi-granulation reduction of GNDISs by the discernibility tool provided a theoretical foundation for designing algorithms of multi-granulation reduction of DISs.



    加载中


    [1] J. C. R. Alcantud, The semantics of N-soft sets, their applications, and a coda about three-way decision, Inform. Sciences, 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084
    [2] D. G. Chen, C. Z. Wang, Q. H. Hu, A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets, Inform. Sciences, 177 (2007), 3500–3518. https://doi.org/10.1016/j.ins.2007.02.041 doi: 10.1016/j.ins.2007.02.041
    [3] J. H. Dai, Z. Y. Wang, W. Y. Huang, Interval-valued fuzzy discernibility pair approach for attribute reduction in incomplete interval-valued information systems, Inform. Sciences, 642 (2023), 119215. https://doi.org/10.1016/j.ins.2023.119215 doi: 10.1016/j.ins.2023.119215
    [4] W. P. Ding, J. Nayak, B. Naik, D. Pelusi, M. Mishra, Fuzzy and real-coded chemical reaction optimization for intrusion detection in industrial big data environment, IEEE T. Ind. Inform., 17 (2021), 4298–4307. https://doi.org/10.1109/tii.2020.3007419 doi: 10.1109/tii.2020.3007419
    [5] H. Y. Gou, X. Y. Zhang, J. L. Yang, Z. Y. Lv, Three-way fusion measures and three-level feature selections based on neighborhood decision systems, Appl. Soft Comput., 148 (2023), 110842. https://doi.org/10.1016/j.asoc.2023.110842 doi: 10.1016/j.asoc.2023.110842
    [6] Q. H. Hu, D. R. Yu, J. F. Liu, C. X. Wu, Neighborhood rough set based heterogeneous feature subset selection, Inform. Sciences, 178 (2008), 3577–3594. https://doi.org/10.1016/j.ins.2008.05.024 doi: 10.1016/j.ins.2008.05.024
    [7] Y. Jiang, Y. Yu, Minimal attribute reduction with rough set based on compactness discernibility information tree, Soft Comput., 20 (2016), 2233–2243. https://doi.org/10.1007/s00500-015-1638-0 doi: 10.1007/s00500-015-1638-0
    [8] Q. Z. Kong, X. W. Zhang, W. H. Xu, S. T. Xie, Attribute reduction of multi-granulation information system, Artif. Intell. Rev., 53 (2020), 1353–1371. https://doi.org/10.1007/s10462-019-09699-3 doi: 10.1007/s10462-019-09699-3
    [9] M. Kryszkiewicz, Rough set approach to incomplete information systems, Inform. Sciences, 112 (1998), 39–49. https://doi.org/10.1016/S0020-0255(98)10019-1 doi: 10.1016/S0020-0255(98)10019-1
    [10] F. M. Ma, M. W. Ding, T. F. Zhang, J. Cao, Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data, Neurocomputing, 344 (2019), 20–27. https://doi.org/10.1016/j.neucom.2018.01.094 doi: 10.1016/j.neucom.2018.01.094
    [11] F. M. Ma, T. F. Zhang, Generalized binary discernibility matrix for attribute reduction in incomplete information systems, J. China Univ. Posts Telecommun., 24 (2017), 57–68. https://doi.org/10.1016/s1005-8885(17)60224-3 doi: 10.1016/s1005-8885(17)60224-3
    [12] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/bf01001956 doi: 10.1007/bf01001956
    [13] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Boston: Kluwer Academic Publishers, 2012.
    [14] Y. H. Qian, S. Y. Li, J. Y. Liang, Z. Z. Shi, F. Wang, Pessimistic rough set based decisions: A multi-granulation fusion strategy, Inform. Sciences, 264 (2014), 196–210. https://doi.org/10.1016/j.ins.2013.12.014 doi: 10.1016/j.ins.2013.12.014
    [15] Y. H. Qian, J. Y. Liang, C. Y. Dang, Incomplete multi-granulation rough set, IEEE T. Syst. Man Cybern., 40 (2010), 420–431. https://doi.org/10.1109/tsmca.2009.2035436 doi: 10.1109/tsmca.2009.2035436
    [16] Y. H. Qian, J. Y. Liang, W. Pedrycz, C. Y. Dang, Positive approximation: An accelerator for attribute reduction in rough set theory, Artif. Intell., 174 (2010), 597–618. https://doi.org/10.1016/j.artint.2010.04.018 doi: 10.1016/j.artint.2010.04.018
    [17] Y. H. Qian, J. Y. Liang, W. Pedrycz, C. Y. Dang, An efficient accelerator for attribute reduction from incomplete data in rough set framework, Pattern Recogn., 44 (2011), 1658–1670. https://doi.org/10.1016/j.patcog.2011.02.020 doi: 10.1016/j.patcog.2011.02.020
    [18] Y. H. Qian, J. Y. Liang, Y. Y. Yao, C. Y. Dang, MGRS: A multi-granulation rough set, Inform. Sciences, 180 (2010), 949–970. https://doi.org/10.1016/j.ins.2009.11.023 doi: 10.1016/j.ins.2009.11.023
    [19] A. Skowron, Boolean reasoning for decision rules generation, In: Proceedings of the international symposium on methodologies for intelligent systems, 1993,295–305. https://doi.org/10.1007/3-540-56804-2_28
    [20] A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems, In: R. Slowinski (ed), Intelligent decision support, Handbook of applications and advances of the rough sets theory, Kluwer Academic Publishers, Dordrecht, 1992. https://doi.org/10.1007/978-94-015-7975-9_21
    [21] A. H. Tan, W. Z. Wu, J. J. Li, T. J. Li, Reduction foundation with multi-granulation rough sets using discernibility, Artif. Intell. Rev., 53 (2020), 2425–2452. https://doi.org/10.1007/s10462-019-09737-0 doi: 10.1007/s10462-019-09737-0
    [22] C. Z. Wang, Q. He, D. G. Chen, Q. H. Hu, A novel method for attribute reduction of covering decision systems, Inform. Sciences, 254 (2014), 181–196. https://doi.org/10.1016/j.ins.2013.08.057 doi: 10.1016/j.ins.2013.08.057
    [23] W. Z. Wu, Knowledge reduction in random incomplete decision tables via evidence theory, Fund. Inform., 115 (2012), 203–218. https://doi.org/10.3233/fi-2012-650 doi: 10.3233/fi-2012-650
    [24] W. H. Xu, D. D. Guo, J. S. Mi, Y. H. Qian, K. Y. Zheng, W. P. Ding, Two-way concept-cognitive learning via concept movement viewpoint, IEEE T. Neur. Netw. Lear. Syst., 34 (2023), 6798–6812. https://doi.org/10.1109/tnnls.2023.3235800 doi: 10.1109/tnnls.2023.3235800
    [25] T. Yang, Y. F. Deng, B. Yu, Y. H. Qian, J. H. Dai, Local feature selection for large-scale data sets limited labels, IEEE T. Knowl. Data En., 35 (2023), 7152–7163. https://doi.org/10.1109/tkde.2022.3181208 doi: 10.1109/tkde.2022.3181208
    [26] Y. Y. Yang, D. G. Chen, X. Zhang, Z. Y. Ji, Covering rough set-based incremental feature selection for mixed decision system, Soft Comput., 26 (2022), 2651–2669. https://doi.org/10.1007/s00500-021-06687-0 doi: 10.1007/s00500-021-06687-0
    [27] Y. Y. Yao, Constructive and algebraic methods of theory of rough sets, Inform. Sciences, 109 (1998), 21–47. https://doi.org/10.1016/S0020-0255(98)00012-7 doi: 10.1016/S0020-0255(98)00012-7
    [28] Y. Y. Yao, Y. H. She, Rough set models in multi-granulation spaces, Inform. Sciences, 327 (2016), 40–56. https://doi.org/10.1016/j.ins.2015.08.011 doi: 10.1016/j.ins.2015.08.011
    [29] Y. Y. Yao, Y. Zhao, Discernibility matrix simplification for constructing attribute reducts, Inform. Sciences, 179 (2009), 867–882. https://doi.org/10.1016/j.ins.2008.11.020 doi: 10.1016/j.ins.2008.11.020
    [30] E. A. K. Zaman, A. Mohamed, A. Ahmad, Feature selection for online streaming high-dimensional data: A state-of-the-art review, Appl. Soft Comput., 127 (2022), 109355. https://doi.org/10.1016/j.asoc.2022.109355 doi: 10.1016/j.asoc.2022.109355
    [31] C. C. Zhang, H. Liu, Z. X. Lu, J. H. Dai, Fast attribute reduction by neighbor inconsistent pair selection for dynamic decision tables, Int. J. Mach. Learn. Cyber., 15 (2024), 739–756. https://doi.org/10.1007/s13042-023-01931-5 doi: 10.1007/s13042-023-01931-5
    [32] C. L. Zhang, J. J. Li, Y. D. Lin, Knowledge reduction of pessimistic multi-granulation rough sets in incomplete information systems, Soft Comput., 25 (2021), 12825–12838. https://doi.org/10.1007/s00500-021-06081-w doi: 10.1007/s00500-021-06081-w
    [33] J. Zhang, G. Q. Zhang, Z. W. Li, L. D. Qu, C. F. Wen, Feature selection in a neighborhood decision information system with application to single cell RNA data classification, Appl. Soft Comput., 113 (2021), 107876. https://doi.org/10.1016/j.asoc.2021.107876 doi: 10.1016/j.asoc.2021.107876
    [34] X. Y. Zhang, W. C. Zhao, Uncertainty measures and feature selection based on composite entropy for generalized multi-granulation fuzzy neighborhood rough set, Fuzzy Set. Syst., 486 (2024), 108971. https://doi.org/10.1016/j.fss.2024.108971 doi: 10.1016/j.fss.2024.108971
    [35] Y. Zhao, Y. Y. Yao, F. Luo, Data analysis based on discernibility and indiscernibility, Inform. Sciences, 177 (2007), 4959–4976. https://doi.org/10.1016/j.ins.2007.06.031 doi: 10.1016/j.ins.2007.06.031
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(130) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog