Research article

A soft set based approach for the decision-making problem with heterogeneous information

  • Received: 06 December 2021 Revised: 19 January 2022 Accepted: 23 January 2022 Published: 19 September 2022
  • MSC : 03E75, 91B06

  • This paper proposes the concept of a neighborhood soft set and its corresponding decision system, named neighborhood soft decision system to solve decision-making (DM) problems with heterogeneous information. Firstly, we present the definition of a neighborhood soft set by combining the concepts of a soft set and neighborhood space. In addition, some operations on neighborhood soft sets such as "restricted/relaxed AND" operations and the degree of dependency between two neighborhood soft sets are defined. Furthermore, the neighborhood soft decision system and its parameter reduction, core attribute are also defined. According to the core attribute, we can get decision rules and make the optimal decision. Finally, the algorithm of DM with heterogeneous information based on the neighborhood soft set is presented and applied in the medical diagnosis, and the comparison analysis with other DM methods is made.

    Citation: Sisi Xia, Lin Chen, Haoran Yang. A soft set based approach for the decision-making problem with heterogeneous information[J]. AIMS Mathematics, 2022, 7(12): 20420-20440. doi: 10.3934/math.20221119

    Related Papers:

  • This paper proposes the concept of a neighborhood soft set and its corresponding decision system, named neighborhood soft decision system to solve decision-making (DM) problems with heterogeneous information. Firstly, we present the definition of a neighborhood soft set by combining the concepts of a soft set and neighborhood space. In addition, some operations on neighborhood soft sets such as "restricted/relaxed AND" operations and the degree of dependency between two neighborhood soft sets are defined. Furthermore, the neighborhood soft decision system and its parameter reduction, core attribute are also defined. According to the core attribute, we can get decision rules and make the optimal decision. Finally, the algorithm of DM with heterogeneous information based on the neighborhood soft set is presented and applied in the medical diagnosis, and the comparison analysis with other DM methods is made.



    加载中


    [1] D. Molodtsov, Soft set theory–First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [2] D. H. Hong, C. H. Choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets Syst., 114 (2000), 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1 doi: 10.1016/S0165-0114(98)00271-1
    [3] E. Fix, J. L. Hodges, Discriminatory analysis–Nonparametric discrimination: Consistency properties, Int. Stat. Rev., 57 (1989), 238–247. https://doi.org/10.2307/1403797 doi: 10.2307/1403797
    [4] F. Ye, An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection, Expert Syst. Appl., 37 (2010), 7050–7055. https://doi.org/10.1016/j.eswa.2010.03.013 doi: 10.1016/j.eswa.2010.03.013
    [5] H. Garg, R. Arora, TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information, AIMS Math., 5 (2020), 2944–2966. http://dx.doi.org/10.3934/math.2020190 doi: 10.3934/math.2020190
    [6] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 doi: 10.1016/0022-247X(67)90189-8
    [7] J. C. R. Alcantud, F. Feng, R. R. Yager, An $N$-soft set approach to rough sets, IEEE Trans. Fuzzy Syst., 28 (2020), 2996–3007. https://doi.org/10.1109/TFUZZ.2019.2946526 doi: 10.1109/TFUZZ.2019.2946526
    [8] J. L. Yang, Y. Y. Yao, Semantics of soft sets and three-way decision with soft sets, Knowledge-Based Syst., 194 (2020), 105538. https://doi.org/10.1016/j.knosys.2020.105538 doi: 10.1016/j.knosys.2020.105538
    [9] J. S. Mi, Y. Leung, W. Z. Wu, Dependence-space-based attribute reduction in consistent decision tables, Soft Comput., 15 (2011), 261–268. https://doi.org/10.1007/s00500-010-0656-1 doi: 10.1007/s00500-010-0656-1
    [10] W. A. Khan, A. Rehman, A. Taouti, Soft near-semirings, AIMS Math., 5 (2020), 6464–6478. https://doi.org/10.3934/math.2020417 doi: 10.3934/math.2020417
    [11] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [12] M. Abu Qamar, A. G. Ahmad, N. Hassan, An approach to Q-neutrosophic soft rings, AIMS Math., 4 (2019), 1291–1306. https://doi.org/10.3934/math.2019.4.1291 doi: 10.3934/math.2019.4.1291
    [13] M. Mohamad, A. Selamat, O. Krejcar, H. Fujita, T. Wu, An analysis on new hybrid parameter selection model performance over big data set, Knowledge-Based Syst., 192 (2020), 105441. https://doi.org/10.1016/j.knosys.2019.105441 doi: 10.1016/j.knosys.2019.105441
    [14] M. Y. Li, Z. P. Fan, T. H. You, Screening alternatives considering different evaluation index sets: A method based on soft set theory, Appl. Soft Comput., 64 (2018), 614–626. https://doi.org/10.1016/j.asoc.2017.12.037 doi: 10.1016/j.asoc.2017.12.037
    [15] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [16] P. Yiarayong, On interval-valued fuzzy soft set theory applied to semigroups, Soft Comput., 24 (2020), 3113–3123. https://doi.org/10.1007/s00500-019-04655-3 doi: 10.1007/s00500-019-04655-3
    [17] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [18] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [19] Q. H. Hu, D. R. Yu, Z. X. Xie, Neighborhood classifiers, Expert Syst. Appl., 34 (2008), 886–876. https://doi.org/10.1016/j.eswa.2006.10.043 doi: 10.1016/j.eswa.2006.10.043
    [20] S. B. Tan, Neighbor-weighted k-nearest neighbor for unbalanced text corpus, Expert Syst. Appl., 28 (2005), 667–671. https://doi.org/10.1016/j.eswa.2004.12.023 doi: 10.1016/j.eswa.2004.12.023
    [21] T. M. Al-shami, An improvement of rough sets' accuracy measure using containment neighborhoods with a medical application, Inform. Sci., 569 (2021), 110–123. https://doi.org/10.1016/j.ins.2021.04.016 doi: 10.1016/j.ins.2021.04.016
    [22] T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0
    [23] T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. https://doi.org/10.3906/mat-2005-117 doi: 10.3906/mat-2005-117
    [24] T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. https://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092
    [25] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [26] T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. https://doi.org/10.1007/s00500-019-04295-7 doi: 10.1007/s00500-019-04295-7
    [27] T. M. Al-shami, Infra soft compact spaces and application to fixed point theorem, J. Funct. Space, 2021 (2021), 3417096. https://doi.org/10.1155/2021/3417096 doi: 10.1155/2021/3417096
    [28] T. M. Al-shami, Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations, Filomat, 33 (2019), 3375–3383. https://doi.org/10.2298/FIL1911375A doi: 10.2298/FIL1911375A
    [29] T. M. Athira, S. J. John, H. Garg, A novel entropy measure of Pythagorean fuzzy soft sets, AIMS Math., 5 (2020), 1050–1061. https://doi.org/10.3934/math.2020073 doi: 10.3934/math.2020073
    [30] W. Xu, Z. Xiao, X. Dang, D. L. Yang, X. L. Yang, Financial ratio selection for business failure prediction using soft set theory, Knowledge-Based Syst., 63 (2014), 59–67. https://doi.org/10.1016/j.knosys.2014.03.007 doi: 10.1016/j.knosys.2014.03.007
    [31] W. L. Gau, D. J. Buehrer, Vague sets, IEEE Trans. Syst. Man Cybern., 23 (1993), 610–614. https://doi.org/10.1109/21.229476 doi: 10.1109/21.229476
    [32] X. B. Yang, T. Y. Lin, J. Y. Yang, Y. Li, D. J. Yu, Combination of interval-valued fuzzy set and soft set, Comput. Math. Appl., 58 (2009), 521–527. https://doi.org/10.1016/j.camwa.2009.04.019 doi: 10.1016/j.camwa.2009.04.019
    [33] X. C. Guan, Y. M. Li, F. Feng, A new order relation on fuzzy soft sets and its application, Soft Comput., 17 (2013), 63–70. https://doi.org/10.1007/s00500-012-0903-8 doi: 10.1007/s00500-012-0903-8
    [34] X. Q. Ma, H. W. Qin, N. Sulaiman, T. Herawan, J. H. Abawajy, The parameter reduction of the interval-valued fuzzy soft sets and its related algorithms, IEEE Trans. Fuzzy Syst., 22 (2014), 57–71. https://doi.org/10.1109/TFUZZ.2013.2246571 doi: 10.1109/TFUZZ.2013.2246571
    [35] X. D. Peng, Y. Yang, Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight, Appl. Soft Comput., 54 (2017), 415–430. https://doi.org/10.1016/j.asoc.2016.06.036 doi: 10.1016/j.asoc.2016.06.036
    [36] Y. Yang, X. Tan, C. C. Meng, The multi-fuzzy soft set and its application in decision making, Appl. Math. Model., 37 (2013), 4915–4923. https://doi.org/10.1016/j.apm.2012.10.015 doi: 10.1016/j.apm.2012.10.015
    [37] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Syst., 21 (2008), 941–945. https://doi.org/10.1016/j.knosys.2008.04.004 doi: 10.1016/j.knosys.2008.04.004
    [38] Z. Pawlak, Rough classification, Int. J. Man-Mach. Stud., 20 (1984), 469–483. https://doi.org/10.1016/S0020-7373(84)80022-X doi: 10.1016/S0020-7373(84)80022-X
    [39] Z. Pawlak, Rough sets and decision tables, In: A. Skowron, Computation theory, Lecture Notes in Computer Science, Symposium on Computation Theory 1984, Berlin, Germany, 208 (1985), 187–196. https://doi.org/10.1007/3-540-16066-3_18
    [40] Z. Xiao, K. Gong, Y. Zou, A combined forecasting approach based on fuzzy soft sets, J. Comput. Appl. Math., 228 (2009), 326–333. https://doi.org/10.1016/j.cam.2008.09.033 doi: 10.1016/j.cam.2008.09.033
    [41] Z. M. Zhang, S. H. Zhang, A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets, Appl. Math. Model., 37 (2013), 4948–4971. https://doi.org/10.1016/j.apm.2012.10.006 doi: 10.1016/j.apm.2012.10.006
    [42] Z. W. Li, G. Q. Wen, N. X. Xie, An approach to fuzzy soft sets in decision making based on grey relational analysis and Dempster-Shafer theory of evidence: An application in medical diagnosis, Artif. Intell. Med., 64 (2015), 161–171. https://doi.org/10.1016/j.artmed.2015.05.002 doi: 10.1016/j.artmed.2015.05.002
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1617) PDF downloads(150) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog