One of the most difficulties that doctors face when diagnosing a disease is making an accurate decision to correctly determine the nature of the injury. This is attributable to the similarity of symptoms for different diseases. The current work is devoted to proposing new mathematical methodologies to help in precise decision-making in the medical diagnosis of the problem of Chikungunya virus disease through the use of soft rough sets. In fact, we introduce some improvements for soft rough sets (given by Feng et al.). We suggest a new approach to studying roughness through the use of soft sets to find approximations of any set, i.e., so-called "soft $ \delta $-rough sets". To illustrate this approach, we compare it with the previous studies and prove that the proposed approach is more accurate than the previous works. The proposed approach is more accurate than Feng et al. approach and extends the scope of applications because the problem of soft upper approximation is solved. The main characterizations of the presented technique are elucidated. Some important relations related to soft $ \delta $-rough approximations (such as soft $ \delta $-memberships, soft $ \delta $-equality and soft $ \delta $-inclusion) are provided and their properties are examined. In addition, an important medical application in the diagnosis of the problem of Chikungunya virus using soft $ \delta $-rough sets is provided with two algorithms. These algorithms were tested on fictitious data in order to compare them to existing methods which represent simple techniques to use in MATLAB. Additionally, we examine the benefits and weaknesses of the proposed approach and present a plan for some upcoming work.
Citation: Mostafa K. El-Bably, Radwan Abu-Gdairi, Mostafa A. El-Gayar. Medical diagnosis for the problem of Chikungunya disease using soft rough sets[J]. AIMS Mathematics, 2023, 8(4): 9082-9105. doi: 10.3934/math.2023455
One of the most difficulties that doctors face when diagnosing a disease is making an accurate decision to correctly determine the nature of the injury. This is attributable to the similarity of symptoms for different diseases. The current work is devoted to proposing new mathematical methodologies to help in precise decision-making in the medical diagnosis of the problem of Chikungunya virus disease through the use of soft rough sets. In fact, we introduce some improvements for soft rough sets (given by Feng et al.). We suggest a new approach to studying roughness through the use of soft sets to find approximations of any set, i.e., so-called "soft $ \delta $-rough sets". To illustrate this approach, we compare it with the previous studies and prove that the proposed approach is more accurate than the previous works. The proposed approach is more accurate than Feng et al. approach and extends the scope of applications because the problem of soft upper approximation is solved. The main characterizations of the presented technique are elucidated. Some important relations related to soft $ \delta $-rough approximations (such as soft $ \delta $-memberships, soft $ \delta $-equality and soft $ \delta $-inclusion) are provided and their properties are examined. In addition, an important medical application in the diagnosis of the problem of Chikungunya virus using soft $ \delta $-rough sets is provided with two algorithms. These algorithms were tested on fictitious data in order to compare them to existing methods which represent simple techniques to use in MATLAB. Additionally, we examine the benefits and weaknesses of the proposed approach and present a plan for some upcoming work.
[1] | Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341-356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[2] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[4] | F. Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125-1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004 |
[5] | D. P. Acharjya, D. Arya, Multicriteria decision-making using interval valued neutrosophic soft set, Artificial Intelligence and Global Society, Chapman and Hall/CRC, New York, 2021,275. https://doi.org/10.1201/9781003006602 |
[6] | N. Kumari, D. P. Acharjya, Data classification using rough set and bioinspired computing in healthcare applications-an extensive review, Multimed. Tools Appl., 2022, 1-27. https://doi.org/10.1007/s11042-022-13776-1 doi: 10.1007/s11042-022-13776-1 |
[7] | N. Kumari, D. P. Acharjya, A decision support system for diagnosis of hepatitis disease using an integrated rough set and fish swarm algorithm, Concurr. Comp.-Pract. E., 34 (2022), e7107. https://doi.org/10.1002/cpe.7107 doi: 10.1002/cpe.7107 |
[8] | M. K. El-Bably, E. A. Abo-Tabl, A topological reduction for predicting of a lung cancer disease based on generalized rough sets, J. Intell. Fuzzy Syst., 41 (2021), 335-346. https://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495 |
[9] | M. K. El-Bably, A. A. El Atik, Soft $\beta$-rough sets and its application to determine COVID-19, Turk. J. Math., 45 (2021), 1133-1148. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93 |
[10] | E. A. Marei, Neighborhood system and decision making, Master's Thesis, Zagazig University, Zagazig, Egypt, 2007. |
[11] | E. A. Marei, Generalized soft rough approach with a medical decision making problem, Eur. J. Sci. Res., 133 (2015), 49-65. |
[12] | R. Abu-Gdairi, M. A. El-Gayar, T. M. Al-shami, A. S. Nawar, M. K. El-Bably, Some topological approaches for generalized rough sets and their decision-making applications, Symmetry, 14 (2022). https://doi.org/10.3390/sym14010095 doi: 10.3390/sym14010095 |
[13] | M. A. El-Gayar, A. A. El Atik, Topological models of rough sets and decision making of COVID-19, Complexity, 2022 (2022), 2989236. https://doi.org/10.1155/2021/2989236 doi: 10.1155/2021/2989236 |
[14] | H. Lu, A. M. Khalil, W. Alharbi, M. A. El-Gayar, A new type of generalized picture fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 40 (2021), 12459-12475. https://doi.org/10.3233/JIFS-201706 doi: 10.3233/JIFS-201706 |
[15] | E. A. Abo-Tabl, M. K. El-Bably, Rough topological structure based on reflexivity with some applications, AIMS Math., 7 (2022), 9911-9925. https://doi.org/10.3934/math.2022553 doi: 10.3934/math.2022553 |
[16] | M. K. El-Bably, M. I. Ali, E. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. https://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495 |
[17] | M. K. El-Bably, M. El-Sayed, Three methods to generalize Pawlak approximations via simply open concepts with economic applications, Soft Comput., 26 (2022), 4685-4700. https://doi.org/10.1007/s00500-022-06816-3 doi: 10.1007/s00500-022-06816-3 |
[18] | M. El Sayed, M. A. El Safty, M. K. El-Bably, Topological approach for decision-making of COVID-19 infection via a nano-topology model, AIMS Math., 6 (2021), 7872-7894. https://doi.org/10.3934/math.2021457 doi: 10.3934/math.2021457 |
[19] | M. M. El-Sharkasy, Topological model for recombination of DNA and RNA, Int. J. Biomath., 11 (2018). https://doi.org/10.1142/S1793524518500973 doi: 10.1142/S1793524518500973 |
[20] | A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, $\theta \beta$-ideal approximation spaces and their applications, AIMS Math., 7 (2022), 2479-2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139 |
[21] | R. Abu-Gdairi, M. A. El-Gayar, M. K. El-Bably, K. K. Fleifel, Two views for generalized rough sets with applications, Mathematics, 18 (2021), 2275. https://doi.org/10.3390/math9182275 doi: 10.3390/math9182275 |
[22] | Z. Li, T. Xie, Q. Li, Topological structure of generalized rough sets, Comput. Math. Appl., 63 (2021), 1066-1071. https://doi.org/10.1016/j.camwa.2011.12.011 doi: 10.1016/j.camwa.2011.12.011 |
[23] | M. E. Abd El-Monsef, M. A. EL-Gayar, R. M. Aqeel, On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces, Int. J. Granul. Comput. Rough Set. Intel. Syst., 3 (2014), 257-271. https://doi.org/10.1504/IJGCRSIS.2014.068022 doi: 10.1504/IJGCRSIS.2014.068022 |
[24] | M. K. El-Bably, T. M. Al-shami, Different kinds of generalized rough sets based on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086. https://doi.org/10.1142/S1793524521500868 doi: 10.1142/S1793524521500868 |
[25] | M. E. A. El-Monsef, M. A. El-Gayar, R. M. Aqeel, A comparison of three types of rough fuzzy sets based on two universal sets, Int. J. Mach. Learn. Cyb., 8 (2017), 343-353. https://doi.org/10.1007/s13042-015-0327-8 doi: 10.1007/s13042-015-0327-8 |
[26] | M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft Comput., 11 (2011), 3329-3332. https://doi.org/10.1016/j.asoc.2011.01.003 doi: 10.1016/j.asoc.2011.01.003 |
[27] | E. A. Abo-Tabl, A comparison of two kinds of definitions of rough approximations based on a similarity relation, Inform. Sci., 181 (2011), 2587-2596. https://doi.org/10.1016/j.ins.2011.01.007 doi: 10.1016/j.ins.2011.01.007 |
[28] | A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts, In: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Part of the Lecture Notes in Artificial Intelligence, Springer, Berlin, Heidelberg, 2005, 64-73. |
[29] | Y. Yao, Generalized rough set models, In: Rough Sets in knowledge Discovery, Polkowski, Physica Verlag, Heidelberg 1998,286-318. |
[30] | P. Zhang, T. Li, C. Luo, G. Wang, AMG-DTRS: Adaptive multi-granulation decision-theoretic rough sets, Int. J. Approx. Reason., 140 (2022), 7-30. https://doi.org/10.1016/j.ijar.2021.09.017 doi: 10.1016/j.ijar.2021.09.017 |
[31] | M. Suo, L. Tao, B. Zhu, X. Miao, Z. Liang, Y. Ding, et al., Single-parameter decision-theoretic rough set, Inform. Sci., 539 (2020), 49-80. https://doi.org/10.1016/j.ins.2020.05.124 doi: 10.1016/j.ins.2020.05.124 |
[32] | H. Dou, X. Yang, X. Song, H. Yu, W. Z. Wu, J. Yang, Decision-theoretic rough set: A multicost strategy, Knowl.-Based Syst., 91 (2016), 71-83. https://doi.org/10.1016/j.knosys.2015.09.011 doi: 10.1016/j.knosys.2015.09.011 |
[33] | Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci., 180 (2010), 341-353. https://doi.org/10.1016/j.ins.2009.09.021 doi: 10.1016/j.ins.2009.09.021 |
[34] | Y. Yao, J. Yang, Granular rough sets and granular shadowed sets: Three-way approximations in Pawlak approximation spaces, Int. J. Approx. Reason., 142 (2022), 231-247. https://doi.org/10.1016/j.ijar.2021.11.012 doi: 10.1016/j.ijar.2021.11.012 |
[35] | Y. Yao, Three-way granular computing, rough sets, and formal concept analysis, Int. J. Approx. Reason., 116 (2022), 106-125. https://doi.org/10.3917/empa.125.0116 doi: 10.3917/empa.125.0116 |
[36] | J. Yang, Y. Yao, Semantics of soft sets and three-way decision with soft sets, Knowl.-Based Syst., 194 (2020), 105538. https://doi.org/10.1016/j.knosys.2020.105538 doi: 10.1016/j.knosys.2020.105538 |
[37] | Z. Liu, J. C. R. Alcantud, K. Qin, L. Xiong, The soft sets and fuzzy sets-based neural networks and application, IEEE Access, 8 (2020), 41615-41625. https://doi.org/10.1109/ACCESS.2020.2976731 doi: 10.1109/ACCESS.2020.2976731 |
[38] | M. El Sayed, A. A. Q. Al Qubati, M. K. El-Bably, Soft pre-rough sets and its applications in decision making, Math. Biosci. Eng., 17 (2021), 6045-6063. https://doi.org/10.3934/mbe.2020321 doi: 10.3934/mbe.2020321 |
[39] | A. R. Roy, P. K. Maji, Fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412-1418. https://doi.org/10.1016/j.cam.2006.04.008 doi: 10.1016/j.cam.2006.04.008 |
[40] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[41] | O. Dalkılıç, N. Demirta, Algorithms for Covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 2022. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5 |
[42] | O. Dalkılıç, N. Demirta, Decision analysis review on the concept of class for bipolar soft set theory, Comput. Appl. Math., 41 (2022), 205. https://doi.org/10.1007/s40314-022-01922-2 doi: 10.1007/s40314-022-01922-2 |
[43] | M. Shabir, M. I. Ali, T. Shaheen, Another approach to soft rough sets, Knowl.-Based Syst., 40 (2013), 72-80. https://doi.org/10.1016/j.knosys.2012.11.012 doi: 10.1016/j.knosys.2012.11.012 |
[44] | J. C. R. Alcantud, The semantics of $N$-soft sets, their applications, and a coda about three-way decision, Inform. Sci., 606 (2022), 837-852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084 |
[45] | J. C. R. Alcantud, G. Santos-García, M. Akram, OWA aggregation operators and multi-agent decisions with $N$-soft sets, Expert Syst. Appl., 203 (2022), 117430. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430 |
[46] | M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex fermatean fuzzy $N$-soft sets: A new hybrid model with applications, J. Amb. Intel. Hum. Comput., 2022. https://doi.org/10.1007/s12652-021-03629-4 doi: 10.1007/s12652-021-03629-4 |
[47] | J. C. R. Alcantud, J. Zhan, Convex rough sets on finite domains, Inform. Sci., 611 (2022), 81-94. https://doi.org/10.1016/j.ins.2022.08.013 doi: 10.1016/j.ins.2022.08.013 |
[48] | J. C. R. Alcantud, The relationship between fuzzy soft and soft topologies, Int. J. Fuzzy Syst., 24 (2022), 1653$–$1668. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4 |
[49] | J. C. R. Alcantud, J. Zhan, Multi-granular soft rough covering sets, Soft Comput., 24 (2020), 9391$–$9402. https://doi.org/10.1007/s00500-020-04987-5 doi: 10.1007/s00500-020-04987-5 |
[50] | J. C. R. Alcantud, F. Feng, R. R. Yager, An $N$-soft set approach to rough sets, IEEE T. Fuzzy Syst., 28 (2020), 2996-3007. https://doi.org/10.1109/TFUZZ.2019.2946526 doi: 10.1109/TFUZZ.2019.2946526 |
[51] | J. C. R. Alcantud, Some formal relationships among soft sets, fuzzy sets, and their extensions, Int. J. Approx. Reason., 68 (2016), 45-53. https://doi.org/10.1016/j.ijar.2015.10.004 doi: 10.1016/j.ijar.2015.10.004 |
[52] | T. K. Das, D. P. Acharjya, A decision making model using soft set and rough set on fuzzy approximation spaces, Int. J. Intell. Syst. Technol. Appl., 13 (2014), 170-186. https://doi.org/10.1504/IJISTA.2014.065172 doi: 10.1504/IJISTA.2014.065172 |
[53] | D. P. Acharjya, P. K. Ahmed, A hybridized rough set and bat-inspired algorithm for knowledge inferencing in the diagnosis of chronic liver disease, Multimed. Tools Appl., 81 (2022), 13489-13512. https://doi.org/10.1007/s11042-021-11495-7 doi: 10.1007/s11042-021-11495-7 |
[54] | D. P. Acharjya, A. Abraham, Rough computing–-A review of abstraction, hybridization and extent of applications, Eng. Appl. Artif. Intel., 96 (2020), 103924. https://doi.org/10.1016/j.engappai.2020.103924 doi: 10.1016/j.engappai.2020.103924 |
[55] | D. P. Acharjya, Knowledge inferencing using artificial bee colony and rough set for diagnosis of hepatitis disease, Int. J. Healthc. Inf. Sy., 16 (2021), 49-72. https://doi.org/10.1353/aph.2021.0086 doi: 10.1353/aph.2021.0086 |
[56] | D. P. Acharjya, A hybrid scheme for heart disease diagnosis using rough set and cuckoo search technique, J. Med. Syst., 44 (2020). https://doi.org/10.1007/s10916-019-1497-9 doi: 10.1007/s10916-019-1497-9 |
[57] | X. Yang, D. Yu, J. Yang, C. Wu, Generalization of soft set theory: From crisp to fuzzy case, Fuzzy Information and Engineering, Springer, Berlin, Heidelberg, 40 (2007), 345-354. https://doi.org/10.1007/BF03215615 |
[58] | J.-B. Liu, S. Ali, M. K. Mahmood, M. H. Mateen, On m-polar diophantine fuzzy N-soft set with applications, Comb. Chem. High T. Scr., 25 (2022), 536-546. https://doi.org/10.2174/1386207323666201230092354 doi: 10.2174/1386207323666201230092354 |
[59] | M. S. Hameed, S. Mukhtar, H. N. Khan, S. Ali, M. H. Mateen, M. Gulzar, Pythagorean fuzzy N-soft groups, Indones. J. Electr. Eng. Comput. Sci., 21 (2021), 1030-1038. http://dx.doi.org/10.11591/ijeecs.v21i2.pp1030-1038 doi: 10.11591/ijeecs.v21i2.pp1030-1038 |
[60] | M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, G. Abbas, Generalized direct product of complex intuitionistic fuzzy subrings, Int. J. Comput. Intell. Syst., 14 (2021), 582-593. https://doi.org/10.2991/ijcis.d.210106.001 doi: 10.2991/ijcis.d.210106.001 |
[61] | M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2021), 196075-196085. https://doi.org/10.1109/ACCESS.2020.3034626 doi: 10.1109/ACCESS.2020.3034626 |
[62] | F. Tchier, G. Ali, M. Gulzar, D. Pamučar, G. Ghorai, A new group decision-making technique under picture fuzzy soft expert information, Entropy, 23 (2021), 1176. https://doi.org/10.3390/e23091176 doi: 10.3390/e23091176 |
[63] | Chikungunya, World Health Organization, Geneva, Switzerland. Available from: https: //www.who.int/news-room/fact-sheets/detail/chikungunya. |
[64] | M. L. Thivagar, C. Richard, N. R. Paul, Mathematical innovations of a modern topology in medical events, Int. J. Inform. Sci., 2 (2012), 33-36. https://doi.org/10.25291/VR/36-VR-33 doi: 10.25291/VR/36-VR-33 |
[65] | M. L. Thivagar, C. Richard, On nano forms of weakly open sets, Int. J. Math. Stat. Invent., 1 (2013), 31–37. |