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Abstract: One of the most difficulties that doctors face when diagnosing a disease is making
an accurate decision to correctly determine the nature of the injury. This is attributable to
the similarity of symptoms for different diseases. The current work is devoted to proposing
new mathematical methodologies to help in precise decision-making in the medical diagnosis
of the problem of Chikungunya virus disease through the use of soft rough sets. In fact, we
introduce some improvements for soft rough sets (given by Feng et al.). We suggest a new
approach to studying roughness through the use of soft sets to find approximations of any
set, i.e., so-called “soft δ-rough sets”. To illustrate this approach, we compare it with the
previous studies and prove that the proposed approach is more accurate than the previous
works. The proposed approach is more accurate than Feng et al. approach and extends the
scope of applications because the problem of soft upper approximation is solved. The main
characterizations of the presented technique are elucidated. Some important relations related to
soft δ-rough approximations (such as soft δ-memberships, soft δ-equality and soft δ-inclusion)
are provided and their properties are examined. In addition, an important medical application in
the diagnosis of the problem of Chikungunya virus using soft δ-rough sets is provided with two
algorithms. These algorithms were tested on fictitious data in order to compare them to existing
methods which represent simple techniques to use in MATLAB. Additionally, we examine the
benefits and weaknesses of the proposed approach and present a plan for some upcoming work.
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List of symbols and abbreviations

CHIKV Chikungunya virus S(M) A soft lower approximation ofM ⊆ Θ

Θ The universal set S(M) A soft upper approximation ofM ⊆ Θ

Φ The empty set b̃ndAS (M) A soft boundary ofM ⊆ Θ

Ω An equivalence relation µ̃AS (M) A soft accuracy of approximations ofM ⊆ Θ

S A soft set Sδ(M) A soft δ-lower approximation ofM ⊆ Θ

κε A mapping of parameters Sδ(M) A soft δ-upper approximation ofM ⊆ Θ

E A set of parameters b̃ndδ(M) A soft boundary ofM ⊆ Θ

AS A soft approximation space µ̃δ(M) A soft δ-accuracy of the approximations ofM ⊆ Θ

1. Introduction

The problem with the medical diagnosis of many diseases is the great similarity between
their symptoms. Therefore, many doctors resort to doing a lot of different medical tests to
make sure that the patient has a specific disease. There is no doubt that these examinations
cause a big problem for some patients due to the high financial cost of these examinations.
On the other hand, these tests may fail to identify the disease with high accuracy. Hence,
many approaches, such as the theory of rough sets [1], the theory of fuzzy sets [2], the theory
of soft sets [3] and soft rough theory [4], represent accurate tools for dealing with medical
problems from many perspectives, like decision-making problems or attributes reduction, for
instance [5–9]. Topological structures are interesting tools in various real-life applications such
as in decision-making problems [12–14], medical applications [15, 16], economic fields [17],
topological reductions of attributes for predicting COVID-19 [18], and biology [20]. Topology
has been applied in the generalization of rough sets [21, 22], and in rough fuzzy approximation
operators [23]. Pawlak proposed the theory of rough sets [1]. It is an extension of set theory
that studies ill-posed data or data with incomplete information. Any subset of the universe is
described in rough set theory by two approximations, named lower and upper approximations.
Researchers have been interested in the theoretical enrichment and applications of rough set
theory since its inception for instance, see [24–29]). As a generalized form of rough set, the
decision-theoretic rough set was suggested to properly explain (see [30–33]), and it has been
used in three-way decision-making [34–36].

Molodtsov presented the theory of soft sets [3]. That theory represents a newer approach to
discussing vagueness and has many applications in decision-making (see [9, 37–42]). Rough
set theory and soft set theory are two approaches to dealing with uncertainty. Although there
appears to be no direct connection between these two theories, efforts have been made to
establish some types of linkage. Feng et al. [4] went a long way toward making parameterization
tools available in rough sets. They defined soft rough sets as parameterized subsets of a set that
are used to find lower and upper approximations of a subset rather than equivalence classes.
Some unusual situations may arise as a result of this. For instance, for any nonempty set
X, its upper approximation may be empty or might not contain the set X. In classical rough
set theory, these situations do not exist. In addition, Example 3.3 in [38] and Examples 1
and 2 in [43] demonstrated that the definition proposed by Feng et al. never meets the exact
criteria of rough sets presented by Pawlak. El-Bably et al. [16] have succeeded in suggesting
new topological approaches to solve these problems. Moreover, they illustrated that their
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approaches represented generalizations for soft rough sets [4]. There are some important models
to generalize soft rough sets including the idea of N-soft sets (for example [44–47]). On the
other hand, Alcantud and colleagues applied soft sets in many fields, as described in [48–51].
In 2014, Das and Acharjya [52] proposed an interesting work that uses soft sets and rough
sets in the decision-making model as an application on fuzzy approximation spaces. Moreover,
many scholars have used these models to apply in medical applications, such as the diagnosis
of chronic liver disease [53], the hybridization and extent of applications [54] and several other
applications [55–57]. Liu et al. [58] presented new approaches to m-polar Diophantine fuzzy
N-soft sets with applications. Also, Hameed et al. used the concept of N-soft sets to introduce
Pythagorean fuzzy N-soft groups (see [59]). In addition, Gulzar et al. introduced complex
intuitionistic fuzzy sets of subrings and applied them in group theory (see [60, 61]). A new
group decision-making technique under picture fuzzy soft expert information was studied by
Tchier et al. [62].

So, the aim of the current paper is to make some improvements and modifications to the
approaches proposed by Feng and colleagues. The proposed approach is more accurate and
extends the scope of applications because the problem of soft upper approximation is solved.
Mathematically, these approaches are called soft δ-rough sets. Some of their properties are
studied and their connections with other methods are examined. We will prove that the
suggested techniques improve and solve some problems in [4] by providing many results and
illustrative examples. Some important relations associated with soft δ-approximations (such as
soft δ-memberships, soft δ-equality, and soft δ-inclusion) are superimposed and their properties
are examined.

According to the World Health Organization WHO [63], Chikungunya (CHIKV, for short)
is a virus that is spread to humans by infected mosquitoes. Fever and severe joint pain are
symptoms of CHIKV infection. The disease has some medical symptoms in common with
dengue and Zika and can be misdiagnosed in areas where both are prevalent. Because an
accurate diagnosis of CHIKV is difficult, there is no reliable estimate of the number of people
affected by the disease globally on an annual basis. Therefore, we need accurate tools to identify
the virus and hence the accurate diagnoses of CHIKV which can help treat and prevent disease
outbreaks. Consequently, we apply the proposed techniques to this problem and prove that
the accuracy of the proposed approaches is better than that of the others (see [4, 26, 43])
and is thus suitable for the diagnoses of CHIKV. Besides, we use soft δ-rough sets to make
a topological reduction of the provided information table to identify the factors that affect the
decision of CHIKV infection. Additionally, we examine the benefits and weaknesses of the
proposed approach and present a plan for some upcoming work.

So, the main objectives of the manuscript are as follows:

• Suggesting some improvements of soft rough sets [4].
• Introducing some soft rough relations, such as soft δ-memberships, soft δ-equality, and

soft δ-inclusion.
• Investigating some comparisons with the other methods in the literature.
• Applying the suggested techniques in the medical diagnosis of CHIKV.
• Proposing two algorithms for the introduced methods by using MATLAB and frameworks

for decision-making problems.
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2. Preliminaries

Herein, we recall some basic notions and results, which were given in [1, 3, 4].

2.1. Pawlak rough set theory

Definition 2.1. [1] Let Θ be a finite set (named, universe), and Ω be an equivalence relation on
Θ. If Θ/Ω represents a family of all equivalence classes of Ω and [m]Ω denotes an equivalence
class of Ω, the pair (Θ,Ω) is called an approximation space for anyM ⊆ Θ; hence, the lower
and upper approximations of M are Ω(M) = {κ ∈ Θ : [m]Ω ⊆ M} and Ω(M) = {m ∈ Θ :
[m]Ω ∩M , Φ}, respectively. In addition, the following holds true:

• The boundary region is b̃ndΩ(M) = Ω(M) −Ω(M).
• The positive region is p̃osΩ(M) = Ω(M).
• The negative region is ñegΩ(M) = Θ −Ω(M).

• The accuracy of approximations is µ̃Ω(M) =
|Ω(M)|

|Ω(M)|
, where

∣∣∣∣Ω(M)
∣∣∣∣ , Φ.

• M is called a rough set if Ω(M) , Ω(M), i.e., b̃ndΩ(M) = Φ and µ̃Ω(M) , 1. Otherwise,
M is an exact set.

For further details about Pawlak rough sets, see [1].

2.2. Soft sets and soft rough sets

Definition 2.2. [3] Suppose that κε : Ă → P(Θ) is a mapping, and that the soft set S over Θ

is a pair (κε, Ă), where Ă ⊆ E and E represents a set of parameters. So, we can say that (κε, Ă)
represents a parameterized family of subsets of Θ such that for each ε ∈ Ă, κε(ε) is considered
as a set of ε-approximate elements of S = (κε, Ă).

Definition 2.3. [4] Let S = (κε, Ă) be a soft set over Θ. Thus, a pair AS = (Θ,S) is named a
soft approximation space. Based on a soft approximation space AS, Feng et al. proposed the
following:

• The softAS-lower and softAS-upper approximations of M ⊆ Θ defined byS(M) = {m ∈

Θ : ∃ε ∈ Ă, [m ∈ κε(ε) ⊆ M]} and S(M) = {m ∈ Θ : ∃ε ∈ Ă, [m ∈ κε(ε), κε(ε) ∩M ,
Φ]}, respectively.
• The soft AS-positive, soft AS-negative, and soft AS-boundary regions are p̃osAS(M) =

S(M), ñegAS(M) = Θ−S(M) = (S(M))c, and b̃ndAS(M) = S(M)−S(M), respectively.

• The accuracy of approximations is µ̃AS(M) =
|S(M)|∣∣∣∣S(M)

∣∣∣∣ , where S(M) , Φ and we call

µ̃AS(M) “softAS-accuracy”.
• A subset M is called a “soft AS-definable” (soft AS-exact) set if S(M) = S(M) =

M, i.e., i f b̃ndAS(M) = Φ. Otherwise,M is called a “softAS-rough” set.

Proposition 2.1. [4] Suppose that AS = (Θ,S) represents a soft approximation space such
that S = (κε, Ă) is a soft set over Θ. Then, for eachM ⊆ Θ,

S(M) =
⋃

ε∈Ă{κε(ε) : κε(ε) ⊆ M} and S(M) =
⋃

ε∈Ă{κε(ε) : κε(ε) ∩M , Φ}.

Proposition 2.2. [4] Let AS = (Θ,S) represent a soft approximation space such that S =

(κε, Ă) represents a soft set over Θ. Then, the soft AS-lower, and AS-upper approximations of
M, N ⊆ Θ satisfy the following:
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(1) S(Φ) = S(Φ) = Φ.

(2) S(Θ) = S(Θ) =
⋃

ε∈Ă κε(ε).

(3) S(M∩N) ⊆ S(M) ∩ S(N).

(4) S(M∪N) ⊇ S(M) ∪ S(N).

(5) S(M∪N) = S(M) ∪ S(N).

(6) S(M∩N) ⊆ S(M) ∩ S(N).

(7) IfM ⊆ N , then S(M) ⊆ S(N).

(8) IfM ⊆ N , then S(M) ⊆ S(N).

Proposition 2.3. [4] Suppose that AS = (Θ,S) is a soft approximation space such that S =

(κε, Ă) is a soft set over Θ. Then, for eachM ⊆ Θ,

(1) S(S(M)) = S(M).

(2) S(S(M))⊇S(M).

(3) S(M) ⊆ S(S(M)).

(4) S(S(M)) = S(M).

Definition 2.4. [4] IfAS = (Θ,S) represents a soft approximation space such that S = (κε, Ă)
is a soft set over Θ, S is said to be a “full soft set” if Θ =

⋃
ε∈Ă κε(ε). Therefore, the full soft

set S means that ∀m ∈ Θ and ∃ε ∈ Ă such that m ∈ κε(ε).

Proposition 2.4. [4] Suppose that AS = (Θ,S) represents a soft approximation space such
that S = (κε, Ă) is a a full soft set. The next axioms are true:

(1) S(Θ) = S(Θ) = Θ.

(2) M ⊆ S(M), ∀M ⊆ Θ.

(3) S({m}) , Φ, ∀m ∈ Θ.

Definition 2.5. [4] Suppose that AS = (Θ,S) represents a soft approximation space with the
full soft set S = (κε, Ă) andZ ⊆ Θ. Therefore, the following holds true:

(1) If S(Z) , Φ and S(Z) , Θ, thenZ is roughly softAS-definable.

(2) If S(Z) = Φ and S(Z) , Θ, thenZ is internally softAS-indefinable.

(3) If S(Z) , Φ and S(Z) = Θ, thenZ is externally soft.

(4) If S(Z) = Φ and S(Z) = Θ, thenZ is totally softAS-indefinable.
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3. Soft δ-rough approximations

In this section, a novel generalization of soft rough approximations called “soft δ-rough
approximations” is proposed as an improvement to the approach proposed by Feng et al. in [4].
The properties of these approaches are superimposed. The proposed approaches are linked to
the previous technique described in Feng et al. model and, hence, improves it. Numerous
examples and counterexamples are provided.

Definition 3.1. IfAS = (Θ,S) represents a soft approximation space with a soft set S = (κε, Ă)
on Θ. Then, for each M ⊆ Θ, the soft δ-lower, and δ-upper approximations are given by
S
δ
(M) = M∩ S(S(M)) and Sδ(M) = M∪ S(S(M)), respectively. Generally, it is referred

to S
δ
(M) and Sδ(M) as “soft δ-rough approximations” of M ⊆ Θ, as associated with AS.

Additionally, we define the following:

(1) The soft δ-positive, δ-negative and δ-boundary regions are

p̃osδ(M) = S
δ
(M), ñegδ(M) = Θ − Sδ(M) and b̃ndδ(M) = Sδ(M) − S

δ
(M), respectively.

(2) The soft δ-accuracy of soft δ-approximations is defined as follows:

µ̃δ(M) =
|Sδ(M)|∣∣∣∣Sδ(M)

∣∣∣∣ , where Sδ(M) , Φ.

(3) If S
δ
(M) = Sδ(M), i.e., i f b̃ndδ(M) = Φ and µ̃δ(M) = 1, we call the subsetM as a “soft

δ-exact” set. Otherwise, it is a “soft δ-rough” set.

In the next results, we examine the basic characteristics of the soft δ-approximations.

Proposition 3.1. If AS = (Θ,S) represents a soft approximation space with a soft set S =

(κε, Ă) on Θ, then, for eachM, N ⊆ Θ, the following holds true:

(1) S
δ
(Φ) = Sδ(Φ) = Φ.

(2) S
δ
(Θ) =

⋃
ε∈Ă κε(ε) and Sδ(Θ) = Θ.

(3) S
δ
(M) ⊆ M ⊆ Sδ(M).

(4) IfM ⊆ N , then S
δ
(M) ⊆ S

δ
(N).

(5) IfM ⊆ N , then Sδ(M) ⊆ Sδ(N).

(6) S
δ
(M∩N) ⊆ S

δ
(M) ∩ S

δ
(N).

(7) S
δ
(M∪N) ⊇ S

δ
(M) ∪ S

δ
(N).

(8) Sδ(M∩N) ⊆ Sδ(M) ∩ Sδ(N).

(9) Sδ(M∪N) ⊇ Sδ(M) ∪ Sδ(N).

Proof. By using Proposition 2.2, we get the following:

(1) As S(Φ) = S(Φ) = Φ, S
δ
(Φ)=Φ ∩ S(S(Φ)) = Φ and, similarly, Sδ(Φ) = Φ.

(2) Since S(Θ) = S(Θ) =
⋃

ε∈Ă κε(ε), S
δ
(Θ) = Θ ∩ S(S(Θ)) = Θ ∩ (

⋃
ε∈Ă κε(ε)) =

⋃
ε∈Ă κε(ε).

On the other hand, Sδ(Θ) = Θ ∪ S(S(Θ)) = Θ.
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(3) By Definition 3.1, the proof is obvious.

(4) Since S(M) ⊆ S(N), for each M ⊆ N , for each M ⊆ N , S
δ
(M) = M ∩ S(S(M)) ⊆

N ∩ S(S(N)) = S
δ
(N).

(5) Follow a similar path as (3).

(6) S
δ
(M∩N) = (M∩N) ∩ S(S(M∩N) ⊆ (M∩N) ∩ S[S(M) ∩ S(N)], and this implies

that S
δ
(M∩N) ⊆ (M∩N)∩ [S(S(M))∩S(S(N))] = [M∩S(S(M)]∩ [N ∩S(S(N)] =

S
δ
(M) ∩ S

δ
(N).

(7) Follow a similar path as (5).

(8) Follow a similar path as (5).

(9) By a similar way like (5).

�

Proposition 3.2. Let AS = (Θ,S) represent a soft approximation space with a soft set S =

(κε, Ă) on Θ. Then, for eachM ⊆ Θ, the following holds true:

(1) S
δ
(S

δ
(M)) = S

δ
(M).

(2) S
δ
(Sδ(M)) ⊆ Sδ(M).

(3) S
δ
(M) ⊆ Sδ(Sδ(M)).

(4) Sδ(M) ⊆ Sδ(Sδ(M)).

Proof. The first item will be proved, and the others similarly.

(1) First, according to Proposition 3.1, since S
δ
(M) ⊆ M for each M ⊆ Θ, S

δ
(S

δ
(M)) ⊆

S
δ
(M).

Now, we need to prove that S
δ
(M) ⊆ S

δ
(S

δ
(M)) as follows:

Assume that $ < S
δ
(S

δ
(M)); thus, $ < [S

δ
(M)∩S(S(S

δ
(M)))] ⊆ Sδ(M). Consequently,

using Proposition 2.2, $ < S
δ
(M) which implies that S

δ
(M) ⊆ S

δ
(S

δ
(M)). Therefore,

S
δ
(M) = S

δ
(S

δ
(M)).

�

As shown in Examples 3.1 and 3.2, the inclusion relations in Proposition 3.2 can be strict.

Example 3.1. Assume that AS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ, where Θ = {x̃1, x̃2, x̃3, ..., x̃6}, E = {ε1, ε2, ε3, ... , ε6} and Ă = {ε1, ε2, ε3, ε4} ⊆

E such that (κε, Ă) = {(ε1, {x̃1, x̃6}), (ε2, {x̃3}), (ε3, Φ), (ε4, {x̃1, x̃2, x̃5})}. IfM = {x̃1, x̃6}, and
N = {x̃3, x̃4, x̃5}, then we get S

δ
(M) = {x̃1, x̃6} which implies that Sδ(Sδ(M)) = {x̃1, x̃2, x̃5, x̃6}.

Hence, S
δ
(M) , Sδ(Sδ(M)). Also, Sδ(N) = {x̃3, x̃4, x̃5} and this means that S

δ
(Sδ(N)) = {x̃3}.

Hence, S
δ
(Sδ(N)) , Sδ(N).

Example 3.2. Suppose that AS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ, where Θ = {x̃1, x̃2, x̃3, x̃4}, E = {ε1, ε2, ε3, ..., ε6} and Ă = {ε1, ε2, ε3} ⊆ E such
that (κε, Ă) ={(ε1, {x̃1, x̃4}), (ε2, {x̃3}), (ε3, {x̃2, x̃3, x̃4})}. IfM = {x̃2, x̃3}, then we get Sδ(M) =

{x̃2, x̃3, x̃4} which implies that Sδ(Sδ(M)) = Θ. Hence, Sδ(M) , Sδ(Sδ(M)).
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Example 3.3. Consider that AS = (Θ,S) represents a soft approximation space such that
S = (κε, Ă) is a soft set on Θ, where Θ = {x̃1, x̃2, x̃3, ..., x̃6}, E = {ε1, ε2, ε3, ..., ε6} and Ă =

{ε1, ε2, ε3, ε4} ⊆ E such that (κε, Ă) = {(ε1, {x̃1, x̃3}), (ε2, {x̃4}), (ε3, {x̃2, x̃4, x̃5}), (ε4, {x̃1, x̃2, x̃3})}.

To illustrate the importance of the suggested method, we compare the current method with
the Feng et al. [4] method as shown in Table 1 for some subsets.

Theorem 3.1. If AS = (Θ,S) is a soft approximation space with a soft set S = (κε, Ă) on Θ.
Then, for each X ⊆ Θ, S(X) ⊆ S

δ
(X).

Proof. First, from Definition 2.3 and Proposition 2.3 for each X ⊆ Θ, S(X) ⊆ M and S(X) ⊆
S(S(X)), it holds that S(X) ⊆ X ∩ S(S(X)) = S

δ
(X). �

Table 1. Comparison between Feng et al. method and current method.

Feng et al. method [4] Current method
b̃ndAS(M) µ̃AS(M) b̃ndδ(M) µ̃δ(M)

{x̃1, x̃2, x̃4, x̃5} {x̃1, x̃3} 3/5 {x̃3} 4/5
{x̃2, x̃3, x̃4} {x̃1, x̃2, x̃3, x̃5} 1/5 {x̃3, x̃5} 1/2
{x̃1, x̃3, x̃4, x̃5} {x̃2, x̃5} 3/5 {x̃2} 4/5
{x̃1, x̃2, x̃4, x̃5} {x̃1, x̃3} 3/5 {x̃1} 3/4
{x̃1, x̃3, x̃4} {x̃2, x̃5} 3/5 {x̃2, x̃5} 3/5

Theorem 3.2. If AS = (Θ,S) is a soft approximation space with a full soft set S = (κε, Ă) on
Θ. Then, for each X ⊆ Θ, Sδ(X) ⊆ S(X).

Proof. From Proposition 2.4, let S be a full soft set. Thus, X ⊆ S(X) for each X ⊆ Θ. Now,
S(X) ⊆ X. Thus, S(S(X)) ⊆ S(X). Therefore, X ∪ S(S(X)) ⊆ S(X). �

Corollary 3.1. IfAS = (Θ,S) is a soft approximation space with a full soft set S = (κε, Ă) on
Θ. Then, for each X ⊆ Θ, the following holds true:

(1) b̃ndδ(X) ⊆ b̃ndAS(X).

(2) µ̃AS(X) ≤ µ̃δ(X).

Corollary 3.2. Suppose thatAS = (Θ,S) represents a soft approximation space with a full soft
set S = (κε, Ă) on Θ. If the subsetM is a softAS-exact set, then it is a soft δ-exact set.

Example 3.4. Let AS = (Θ,S) be a soft approximation space with a soft set S = (κε, Ă) on
Θ, where Θ = {x̃1, x̃2, x̃3, ..., x̃6}, E = {ε1, ε2, ε3, ..., ε6} and Ă = {ε1, ε2, ε3} ⊆ E such
that (κε, Ă) ={(ε1, {x̃1, x̃6}), (é2, {x̃3}), (ε3, {x̃1, x̃4})} let B = {x̃3, x̃4, x̃5} and D = {x̃1, x̃4,
x̃6}. Thus S(B) = {x̃3} and S(B) = {x̃1, x̃3, x̃4}. But S

δ
(B) = {x̃3} and Sδ(B) = { x̃3, x̃4, x̃5}.

It is clear that B 1 S(B), but S
δ
(B) ⊆ B ⊆ Sδ(B). Similarly, S(D) = S(D) = D which

implies that D is a soft exact set (according to Feng et al. [4]) . On the other hand, we get
S
δ
(D) = Sδ(D) = D and then b̃ndδ(D) = φ and µ̃δ(D) = 1. Accordingly,D is also soft δ-exact

(definable) in our approach.
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Remark 3.1. According to Theorem 3.1 and its corollaries, It should be noted that the proposed
approach (soft δ-approximations) improves the soft rough approximations [4]. Theorem 3.1
proved that soft δ-lower approximation is bigger than soft lower approximation. Moreover, the
suggested soft δ-upper approximation improves soft upper approximation since X ⊆ S(X) does
not hold in general. But X ⊆ Sδ(X), for each X ⊆ Θ. Examples 3.3 and 3.4 illustrated this
remark.

Definition 3.2. Suppose that AS = (Θ,S) is a soft approximation space such that S = (κε, Ă)
is a soft set over Θ, and that X ⊆ Θ. Thus, the following holds true:

(1) If S
δ
(X) , Φ and Sδ(X) , Θ, then X is roughly soft δ-definable.

(2) If S
δ
(X) = Φ and Sδ(X) , Θ, then X is internally soft δ-indefinable.

(3) If S
δ
(X) , Φ and Sδ(X) = Θ, then X is externally soft δ-indefinable.

(4) If S
δ
(X) = Φ and Sδ(X) = Θ, then X is totally soft δ-indefinable.

The above classifications can be interpreted as follows:

- This case is interpreted as an exact decision for some members of Θ which belong to X,
and for other elements of Θ which exist in Xc, by utilizing existing knowledge fromAS.

- The internally soft δ-indefinable case is interpreted as a defined decision for some
elements of Θ that belong to Xc, but we cannot determine for any element of Θ that it
belongs to X based on the existing knowledge ofAS.

- For an externally soft δ-indefinable setX, this case is interpreted as a well-defined decision
for some elements of Θ that belong to X, but we cannot determine for any element of Θ

that it belongs to Xc based on the current knowledge ofAS.

- For a totally soft δ-indefinable set X, this case is interpreted as a clear decision for any
element of Θ, in terms of whether it belongs to X or Xc based on the present knowledge
ofAS.

Based on Theorem 3.1, it is easy to prove the following result. So, the proof is omitted.

Theorem 3.3. Suppose that AS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ and X ⊆ Θ:

(1) X is a roughly soft δ-definable set, which implies that it is roughly softAS-definable.

(2) X is an internally soft δ-indefinable set, implying that it is internally softAS-indefinable.

(3) X is an externally soft δ-indefinable set, implying that it is externally softAS-indefinable.

(4) X is a totally soft δ-indefinable set, implying that it is totally softAS-indefinable.

Remark 3.2. (1) According to Theorem 3.2, we conclude that the suggested approximations
(soft δ-rough approximations) improved soft rough approximations [4]; for example, let X
be totally soft AS-indefinable which implies that S(X) = Φ and S(X) = Θ; thus, we
cannot decide for any element of Θ whether it belongs to X or Xc. On the other hand,

AIMS Mathematics Volume 8, Issue 4, 9082–9105.



9091

according to the soft δ-rough approximations, S
δ
(X) , Φ and Sδ(X) , Θ; then, X can be

a roughly soft δ-definable set which means that we can determine for some elements of Θ

that they belong to X; meanwhile, for some elements of Θ, we can decide that they belong
to Xc, by using available knowledge from the soft approximation space AS (Examples 3.3,
and 3.4 illustrate this remark).

(2) The reverse of Theorem 3.2 is not valid in general, as demonstrated by Examples 3.3
and 3.4.

4. Some relations generated by soft δ-approximations

In ordinary set theory, some notions (namely, memberships, equality, and inclusion relations)
differ essentially from soft rough set theory. So, in the present section, we introduce and study
these relations in soft rough sets by using the suggested approaches (soft δ-rough sets).

Definition 4.1. Suppose thatAS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ. Thus, for any $ ∈ Θ, we define two soft δ-membership relations as follows:

(1) The soft δ-lower belonging (symbolized by $∈δM ) if and only if $ ∈ S
δ
(M) such that

M ⊆ Θ.

(2) The soft δ-upper belonging (symbolized by $∈δM ) if and only if $ ∈ Sδ(M) such that
M ⊆ Θ.

Proposition 4.1. Suppose that AS = (Θ,S) represents a soft approximation space with a soft
set S = (κε, Ă) on Θ. Then, for eachM,N ⊆ Θ, the following holds true:

(1) IfM ⊆ N and $∈δM, then $∈δN . Also, if $∈δM, then $∈δN .

(2) If $∈δ(M∩N), then $∈δM and $∈δN .

(3) $∈δ(M∪N) if and only if $∈δM or $∈δN .

(4) If $∈δ(M∩N), then $∈δM and $∈δN .

Proof. We will prove the first item and the others easily in a same way.

(1) First, letM ⊆ N . Then S
δ
(M) ⊆ S

δ
(N) and Sδ(M) ⊆ Sδ(M). Accordingly, if $∈δM then

$ ∈ S
δ
(M) ⊆ S

δ
(N). Therefore, $∈δN . Similarly, if $∈δM then $ ∈ Sδ(M) ⊆ Ś δ(N).

Therefore, $∈δN .

�

In ordinary set theory, the concept of set equality means that two sets are equal if they
have the same elements. This concept is fundamentally different from soft rough sets. As
a result, another concept of set equality is required in our approach (namely, approximate or
rough equality). Thus, in set theory, the two sets can be unequal (i.e., have different elements),
but in our approach, they can be roughly equal. In what follows, we define new concepts for
equality (namely, soft-δ-lower equal, soft-δ-upper equal).
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Definition 4.2. Suppose thatAS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ. Then, for eachM,N ⊆ Θ, the following holds true:

(1) M and N are soft δ-lower equal (briefly,M 'δ N i) if and only if S
δ
(N) = S

δ
(N).

(2) M and N are soft δ-upper equal (briefly,M hδ N) if and only if Sδ(M) = Sδ(N).

(3) M and N are soft δ-equal (briefly,M ≈δ N ) ifM 'δ N andM hδ N .

Example 4.1. Suppose that AS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ, where Θ = {x̃1, x̃2, x̃3, ..., x̃6}, É = {ε1, ε2, ε3, ..., ε6} and Ă = {ε1, ε2, ε3,
ε4} ⊆ É such that (κε, Ă) = {(ε1, {x̃1, x̃6}), (ε2, {x̃3}), (ε3, Φ), (ε4, {x̃1, x̃2, x̃5})}. Now, let B = {x̃3,
x̃4} andD = {x̃1, x̃2, x̃3}. Then, we get S

δ
(B) = {x̃3} = S

δ
(D) = {x̃3}, which implies that B 'δ D

. Also, setW = {x̃1, x̃3, x̃6} and V = {x̃1, x̃2, x̃6}. Then, we obtain Sδ(W) = Sδ(V) = {x̃1, x̃2,
x̃3, x̃5, x̃6} and thusW hδ V.

Proposition 4.2. Suppose that AS = (Θ,S) represents a soft approximation space with a soft
set S = (κε, Ă) on Θ. Then, for eachM,N ,W,V ⊆ Θ, the following holds true:

(1) IfM hδW and N hδ V, thenM∪N hδW∪V.

(2) M hδ N if and only ifM hδ (M∪N) hδ N .

(3) IfM hδ N , thenM∪N c hδ Θ.

(4) IfM ⊆ N and N hδ Φ, thenM hδ Φ.

(5) IfM ⊆ N andM hδ Θ, then N hδ Θ.

Proof. (1) Assume thatM hδ W and N hδ V; then, Sδ(M) = Sδ(W) and Sδ(N) = Sδ(V).
Thus, Sδ(M) ∪ Sδ(N) = Sδ(W) ∪ Sδ(V), which implies that Sδ(M∪N) = Sδ(W∪V).
Hence,M∪N hδW∪V.

(2) Follow as similar path (1).

(3) LetM hδ N ; then, Sδ(M) = Sδ(N), which implies that Sδ(M∪N c) = Sδ(M)∪Sδ(N c) =

Sδ(N)∪Sδ(N c). But, Sδ(N)∪Sδ(N c) = Sδ(N ∪N c) = Sδ(Θ), which means that Sδ(M∪
N c) = Sδ(Θ) and, hence,M∪N c hδ Θ.

(4) Follow a similar path (3).

(5) By using (3) and (4), the proof is obvious.
�

Definition 4.3. Suppose thatAS = (Θ,S) represents a soft approximation space with a soft set
S = (κε, Ă) on Θ. Then, for eachM,N ⊆ Θ, the following holds true:

(1) The setM is a soft δ-lower subset of N (written,M @
v δ
N) if and only if S

δ
(M) ⊆ S

δ
(N).

(2) The setM is a soft δ-upper subset of N (written,M
v
@δ N) if and only if Sδ(M) ⊆ Sδ(N).

(3) The setM is a soft δ-roughly subset inN (written,M
v
@δ
v
N) if and only if S

δ
(M) ⊆ S

δ
(N)

and Sδ(M) ⊆ Sδ(N).
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Remark 4.1. It must be noticed that the soft δ-rough inclusion of sets does not imply ordinary
inclusion. Example 4.2 demonstrates this note:

Example 4.2. Consider Example 4.1,M = {x̃1} and ξ = {x̃3, x̃4, x̃5}. Hence, we get S
δ
(M) = Φ

and S
δ
(N) = {x̃1}, which implies,M @

v δ
N althoughM " N .

Proposition 4.3. Suppose that AS = (Θ,S) represents a soft approximation space with a soft
set Ś = (κε, Ă) on Θ. Then, for eachM,N ⊆ Θ, the following holds true:

(1) IfM ⊆ N , thenM @
v δ
N ,M

v
@δ N andM

v
@δ
v
N .

(2) IfM @
v δ
N and N @

v δ
M, thenM 'δ N .

(3) IfM
v
@δ N and N

v
@δM, thenM hδ N .

(4) IfM
v
@δ
v
N and N

v
@δ
v
M, thenM ≈δ N .

Proof. (1) It is obvious.

(2) Let M @
v δ
N and N @

v δ
M. Then, S

δ
(M) ⊆ S

δ
(N) and S

δ
(N) ⊆ S

δ
(M) which implies

S
δ
(M) = S

δ
(N). Accordingly,M 'δ N .

(3) Follow a similar path as (2).

(4) Follow a similar path as (2).
�

Based on Proposition 4.3, it is easy to prove the next proposition. Therefore, the proof is
omitted.

Proposition 4.4. Suppose that AS = (Θ,S) represents a soft approximation space with a soft
set S = (κε, Ă) on Θ. Then, for eachM,N ,W,V ⊆ Θ, the following holds true:

(1) M
v
@δ N if and only ifM∪N hδ N .

(2) M∩N @
v δ
M

v
@δM∪N .

(3) IfM ⊆ N ,M 'δW andM 'δ V, thenW @
v δ
V.

(4) IfM ⊆ N ,M hδW and N hδ V, thenW
v
@δ V.

(5) IfM
v
@δ N andW

v
@δ V, thenM∪W

v
@δ N ∪V.

(6) IfM ⊆ N ,M ≈δW and N ≈δ V, thenW
v
@δ
v
V.
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5. Medical application for diagnosis of the Chikungunya virus using soft δ-rough sets

The problem of Chikungunya virus (CHIKV), which is transmitted to humans by virus-
carrying Aedes mosquitos, is addressed here. CHIKV outbreaks have recently been linked to
severe illness. It causes a high fever and excruciating joint pain. Muscle pain, headache, and
nausea are some of the other symptoms. The initial symptoms are similar to those of dengue
fever. It is not usually life-threatening. However, joint pain can last for a long time and complete
recovery can take months. They usually occur as a lifelong immunity to infection. Therefore,
an accurate diagnosis of the disease can limit the spread of infection and thus eliminate the
disease. In this section, we present a medical application for CHIKV. We try to help the doctor
in two ways. The first is help with making an accurate medical decision about the diagnosis
of the disease. The other is by enabling data reduction to try to reduce the number of medical
tests required to diagnose the disease, which saves time and effort in addition to saving money.
Suppose the following information table has data about eight patients as in Table 2, which
represents a decision table.

Example 5.1. A set valued information system is presented in Table 2, where Θ = {p̃1, p̃2, p̃3,

..., p̃8} for eight patients, Ă = {ẽ1 = Joint pain, ẽ2 = Headache, ẽ3 = Nausea, ẽ4 = Temperature}
is a set of parameters which illustrate symptoms for patients. Suppose that a soft set S = (κẽ, Ă)
which describes the patients having or not having CHIKV as in Table 2, where S = (κẽ, Ă) =

{(ẽ1, { p̃1, p̃2, p̃6, p̃8}), (ẽ2, { p̃1, p̃3, p̃6} ), (ẽ3, { p̃1, p̃4, p̃7}), (ẽ4, { p̃1, p̃3, p̃4, p̃6, p̃8})}.

5.1. Clinical decision-making of CHIKV using soft δ-rough sets

First, we illustrate that the proposed method, in the presented paper, is more accurate and
valuable in decision making than the previous one [4, 26, 43]. We will apply the two methods
in the existing decision table Table 2 as follows:

According to Table 2, consider that X̃ = { p̃1, p̃3, p̃6, p̃8} represents a set of patients with
CHIKV. So, we will compute the approximations of it by using the previous method [4] and via
the suggested approaches as follows:

• Soft rough sets [4]:
S(X̃) = { p̃1, p̃3, p̃6} ⊂ X̃ and S(X̃) = { p̃1, p̃2, p̃3, p̃4, p̃6, p̃7, p̃8}. Accordingly, we obtain
b̃ndAS(X̃) = { p̃2, p̃4, p̃7, p̃8} and µ̃AS(X̃) = 3/7=̃42%.
• Soft δ-rough sets:
S
δ
(X̃) = X̃ and Sδ(X̃) = { p̃1, p̃2, p̃3, p̃4, p̃6, p̃7, p̃8}. Accordingly, we obtain b̃ndδ(X̃) = { p̃2,

p̃4, p̃7} and µ̃δ(X̃) = 4/7=̃57%.

Observation: According to the above comparison, the following is noticed:
According to the Feng et al. method, we cannot determine whether the patient p̃8 has
CHIKV infection or not, because that patient is located in the boundary region although
this patient surely has the disease according to Table 2.
On the other hand, by using the proposed approaches, we surely identify the patients that
have CHIKV since the positive region is S

δ
(X̃) = X̃ which is interpreted as the only

patients with CHIKV are p̃1, p̃3, p̃6 and p̃8 which is identical to the decision table (Table 2).
So, accurate decision-making is critical in our daily lives, and this technique produces
the greatest choice from a set of alternatives. Therefore, we can say that the suggested
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techniques in this paper may be valuable in medical diagnosis which always requires an
accurate decision, such as in the cases of COVID-19, Omicron and SARS.

Because decision-making represents an important base in everyday life, especially in medical
diagnosis, we present Algorithm 1, which may be used to make an accurate decision for any
information system using soft δ-approximations.

Table 2. Decision table for CHIKV.

patients ẽ1 ẽ2 ẽ3 ẽ4 CHIKV
p̃1 1 1 1 1 1
p̃2 1 0 0 0 0
p̃3 0 1 0 1 1
p̃4 0 0 1 1 0
p̃5 0 0 0 0 0
p̃6 1 1 0 1 1
p̃7 0 0 1 0 0
p̃8 1 0 0 1 1

Algorithm 1: Decision-making via soft δ-approximations

Input: An information system of given medical data in a tabular form.
Output: Exact decision of whether patients have CHIKV or not.
Step 1: Construct a soft set S = (κẽ, Ă), where Ă represents a set of parameters (symptoms)
from the tabular form of given data.
Step 2: Determine the set X̃ of choice patients under consideration for diagnosis.
Step 3: Compute a soft δ-lower approximation, S

δ
(X̃), and a soft δ-upper approximation, Sδ(X̃),

for X̃ by using Definition 3.1.
Step 4: Evaluate a soft δ-boundary region, b̃ndδ(X̃), and a soft δ-accuracy µ̃δ(X̃) of X̃ from
Step 2.
Step 5:

- If b̃ndδ(X̃) = Φ and µ̃δ(X̃) = 1, then, X̃ is a soft δ-exact set; hence, these patients surely
have CHIKV.

- Else, X̃ is a soft δ-rough set and hence the patients in the soft δ-positive region p̃osδ(X̃) =

S
δ
(X̃) surely have CHIKV. And the patients in the soft δ-negative region ñegδ(X̃) =

[Sδ(X̃)]c surely do not have CHIKV.

End
Figure 1 represents a simple framework to make an accurate medical-decision using the

proposed techniques (soft δ-approximations) in MATLAB.
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Figure 1. Simple flowchart for medical decision-making via soft δ-approximations.
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5.2. Some comparisons with the previous methods

In addition to comparing the current methods with the Feng et al. method (to prove that the
proposed method improves that approach), we present in this section some comparisons with
some previous generalizations of soft rough sets to emphasize the significance of the proposed
approach in making decisions for life applications. To illustrate this fact, we have applied
the previous two methods [26, 43] in the suggested medical application ( i.e., the problem of
CHIKV [63, 64]). And then we prove that these methods are not suitable for solving this
medical problem and fail to give a correct decision that is useful in the medical diagnosis.

• Shabir et al. technique “modified soft rough sets (MS R-sets)” [43] :
Shabir et al. proposed a new approach to studying roughness through the use of soft sets
in order to find the approximations of a set. This new model is known as modified soft
rough sets (MS R-sets). Thus, we will apply this technique in the applied Example 5.1.

Definition 5.1. Suppose that S = (κẽ, Ă) is a soft set over Θ, where κẽ is a map κẽ : Ă −→ P(Θ).
If σù : Θ −→ P(Ă) is another map defined as σù(ù) = {ẽ ∈ Ă : ù ∈ κẽ(ẽ)}, then the pair (Θ, σù)
is called the modified soft rough approximation space (briefly, MS R-approximation space) and
for eachM ⊆ Θ, the lower MS R-approximation and upper MS R-approximation are given by:

σù(M) = {ù ∈ M : σù (ù) , σù (v̀) , for all v̀ ∈ Mc} and

σù(M) = {ù ∈ Θ : σù (ù) = σù (v̀) , for some v̀ ∈ M} , respectively.

Therefore, from Table 2, we get the following σù ( p̃1) = {ẽ1, ẽ2, ẽ3, ẽ4}, σù (p̃2) = {ẽ1},
σù ( p̃3) = {ẽ2, ẽ4}, σù ( p̃4) = {ẽ3, ẽ4}, σù ( p̃5) = Φ, σù ( p̃6) = {ẽ1, ẽ2, ẽ4}, σù (p̃7) = {ẽ3} and
σù ( p̃8) = {ẽ1, ẽ4}. As a result, these sets are distinct; thus, all subsets of Θ are definable; this
means that, in the proposed application example, that method fails to present different lower
and upper approximations (Example 5.1).

• Ali technique [26]: Based on a soft set, Ali succeeded in proving that every soft set gives
rise to an approximation space in Pawlak’s sense. In fact, he suggested a new technique
for roughness associated with soft sets.

Definition 5.2. Suppose that S = (κẽ, Ă) is a soft set over Θ. Thus, (κẽ, Ă) is said to be a
soft binary relation on Θ. Obviously, (κẽ, Ă) represents a parameterized collection of binary
relations on Θ. Therefore, for each parameter ẽ ∈ Ă, we obtain a binary relation (κẽ, Ă) on Θ.

Definition 5.3. A soft binary relation (κẽ, Ă) on Θ, is said to be a soft equivalence relation, if
κẽ(ẽ) , Φ is an equivalence relation on Θ for all ẽ ∈ Ă.

Remark 5.1. It is well known that each equivalence relation on a set partitions the set into
disjoint classes , and that each partition of the set offers us an equivalence relation on the set.
So, a soft equivalence relation over Θ, provides us a parameterized collection of partitions of Θ.

Now, from Table 2, the classes for each parameter are as follows:
The classes of ẽ1 are { p̃1, p̃2, p̃6, p̃8} , { p̃3, p̃4, p̃5, p̃7}.
The classes of ẽ2 are { p̃1, p̃3, p̃6} , {p̃2, p̃4, p̃5, p̃7, p̃8}.
The classes of ẽ3 are { p̃1, p̃4, p̃7} , { p̃2, p̃3, p̃5, p̃6, p̃8}.
The classes of ẽ4 are { p̃1, p̃3, p̃4, p̃6, p̃8} , { p̃2, p̃5, p̃7}.
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Accordingly, the intersection of each of these classes is { p̃1}, { p̃2}, { p̃3}, { p̃4}, { p̃5}, { p̃6}, { p̃7},
{ p̃8}. As a result, the intersection of all equivalence relations results in the identity relation
Ŕ = {( p̃1, p̃1), ( p̃2, p̃2), ( p̃3, p̃3), ( p̃4, p̃4), (p̃5, p̃5), ( p̃6, p̃6), (p̃7, p̃7), ( p̃8, p̃8)}. As a result, every
subset is definable in the approximation space (Θ, acuteR). Accordingly, in the given example,
the method discussed in [26] fails to produce separated lower and upper approximations.

5.3. Soft δ-reduction of attributes

One of the important goals of medical diagnosis is to determine the most important factors
affecting the development of the disease. On the other hand, reducing the number of medical
examinations is one of the goals that save time, effort and money in an accurate medical
diagnosis. So, we are trying to help the doctor here by doing data scraping to try to reduce
the number of medical tests to diagnose the disease, thereby saving time and effort, as well
as money.

Soft δ-rough sets serve an important purpose in data reduction by eliminating redundant
attributes in an information table. As a result, the current subsection is dedicated to making
a topological reduction of an information system of Table 2. First, we use soft δ-rough sets
to identify the key factors of CHIKV, extending the concept of “nano-topology” proposed by
Thivagar and Richard [65].

First, let us extend the definition of “nano-topology” by using soft δ-rough sets.

Definition 5.4. Consider the soft approximation space AS = (Θ,S) with a soft set S = (κẽ, Ă)
on Θ, as well as M ⊆ Θ. Therefore, the collection τδ = {Θ, Φ, S

δ
(M), Sδ(M), b̃ndδ(M)}

is called a “δ-nano topology” and it is a general topology produced by the soft δ-rough set
M ⊆ Θ. In addition, the basis of this topology is given by βδ = {Θ, S

δ
(M), b̃ndδ(M)}.

Definition 5.5. Suppose thatAS = (Θ,S) represents a soft approximation space with a soft set
S = (κẽ, Ă) on Θ, and that τδ is a δ-nano topology on Θ with a basis βδ. Thus, the following
holds true:
(i) If βδ−ẽk = βδ, then ẽk is called a “dispensable” attribute.
(ii) If βδ−ẽk , βδ, then ẽk is a “non-dispensable” attribute.
Furthermore, CORE = {ẽk} is defined as a core attributes that represents the common part of
the reduction.

Now, using soft δ-rough sets, the topological reduction of Table 2 to identify the key factors
of CHIKV is superimposed as follows:
First, we can evaluate the δ-nano topology for decision-making by using two sets of patients:

• Case 1: M = { p̃1, p̃3, p̃6, p̃8} which represents a set of patients that have CHIKV, and
• Case 2: N = { p̃2, p̃4, p̃5, p̃7} which represents a set of patients that do not have CHIKV.

Thus, we useM to perform a topological reduction and N in the same way.
Case 1: (Patients with CHIKV)
According to Table 2, we obtain S

δ
(M) = { p̃1, p̃3, p̃6, p̃8}, Sδ(M) = { p̃1, p̃2, p̃3, p̃4, p̃6, p̃7, p̃8}

and hence b̃ndδ(M) = { p̃2, p̃4, p̃7}. Thus, the basis of δ-nano topology generated byM is:

βδ = {Θ, { p̃2, p̃4, p̃7}, { p̃1, p̃3, p̃6, p̃8}}.

Step 1: If we omit ”ẽ1 = Joint pain”, then the soft δ-approximations ofM in this case are
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S
δ−ẽ1

(M) = { p̃1, p̃3, p̃6, p̃8}, Sδ−ẽ1
(M) = { p̃1, p̃3, p̃4, p̃6, p̃7, p̃8} and b̃nd

δ−ẽ1
(M) = { p̃4, p̃7}.

So, the basis of δ-nano topology generated byM is

βδ−ẽ1 = {Θ, { p̃4, p̃7}, { p̃1, p̃3, p̃6, p̃8}} , βδ.

Step 2: If we omit “ẽ2 = Headache”, then by the same method as in Step 1, we obtain

βδ−ẽ2 = {Θ,Φ, { p̃1, p̃3, p̃6, p̃8}} , βδ.

Step 3: If we omit “ẽ3 = Nausea”, then by the same method as in Step 1, we obtain

βδ−ẽ3 = {Θ, { p̃2, p̃4}, { p̃1, p̃3, p̃6, p̃8}} , βδ.

Step 4: If we omit “ẽ4 = Temperature”, then by the same method as in Step 1, we obtain

βδ−ẽ4 = {Θ, { p̃2, p̃4, p̃7}, { p̃1, p̃3, p̃6, p̃8}} = βδ.

Therefore, we get that the attribute ẽ4 is dispensable while the attributes ẽ1, ẽ2 and ẽ3 are not
dispensable. Thus, the core of attributes is CORE = {ẽ1, ẽ2, ẽ3}. That is, joint pain, headache,
and nausea are the main symptoms associated with the CHIKV.
Algorithm 2 represents a simple tool for the topological reduction of attributes for an
information system via soft δ-approximations.
Algorithm 2: Topological reduction of attributes via soft δ-rough approximations

Input: An information system of given medical data in a tabular form.
Output: The core of attributes for deciding the CHIKV infection.
Step 1: Construct the soft set S = (κẽ, Ă), where Ă represents a set of parameters (symptoms)
from the tabular form of given data.
Step 2: Input the universe set Θ, a set of all patients under consideration, and a subset X̃ ⊂ Θ

of some infected patients with CHIKV infection.
Step 3: Evaluate a soft δ-lower approximation, S

δ
(X̃), a soft δ-upper approximation, Sδ(X̃),

and a soft δ-boundary, b̃ndδ(X̃), for X̃ by using Definition 3.1.
Step 4: Produce βδ as a basis of a δ-nano topology of X̃ by applying βδ = {Θ, S

δ
(X̃), b̃ndδ(X̃)}

via Step 2.
Step 5: Remove the first attribute ẽ1 from the attributes Ă and then compute the soft δ-
approximations and soft δ-boundary for X̃.
Step 6: By using Step 5, generate βδ−ẽ1 as a basis of a δ-nano topology of X̃ by:

βδ−ẽ1 = {Θ, S
δ−ẽ1

(X̃), b̃ndδ−ẽ1(X̃)}.

Step 7:

- If βδ−ẽ1 , βδ, then the attribute ẽ1 is not dispensable.
- Else the attribute ẽ1 is dispensable; hence, it can be eliminate from examinations.

Step 8: Repeat Steps 5–7 for all attributes and then decide the core as follows:

CORE = {ẽk : βδ−ẽk , βδ,∀k = 1, 2, 3, ...}.

End
Figure 2 represents a simple framework to make an accurate medical decision by using the

proposed technique (soft δ-approximations) in MATLAB.
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Figure 2. Flowchart for a topological reduction of attributes via soft δ-
approximations.

6. Conclusions and discussions

In this manuscript, the idea of “soft δ-rough sets” was suggested as a modification and
improvement to the soft rough sets approach proposed by Feng et al. [4]. Some of their
characteristics were assumed. Theorems 3.1–3.3 and their corollaries proved that soft δ-rough
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approaches improved the soft rough set models. On the other hand, this approach is more
accurate than the Feng et al. technique and extends the scope of applications because the
problem of soft upper approximation is solved. The main virtues of the current methodology are
that it yields the highest accuracy values as compared with some of the other approaches given
in the published literature, and also that it preserves the monotonicity property of the accuracy
and roughness measures. In addition, some illustrative examples and medical applications
with results demonstrated that the accuracy of the proposed method is better than that of
other techniques [4, 26, 43]. Some important relations related to soft δ-rough approximations
(such as soft δ-memberships, soft δ-equality, and soft δ-inclusion) have been provided and
their properties have been examined. One of the difficulties of medical diagnosis is making
an accurate decision about patients; so, we have presented medical applications related to
making decisions for medical diagnosis for CHIKV problems [63, 64]; thus, we demonstrated
the importance of current methods in real-life applications as compared with the previous
approaches. In fact, we proved that the previous techniques [4, 26, 43] are not suitable for
solving this medical problem and fail to give a correct decision in the medical diagnosis.
Furthermore, to help the doctor in a medical diagnosis of CHIKV, we have extended the notion
of nano-topology (given by [65]) using soft δ-rough approximations; hence, we have proposed
a topological reduction for existing decision tables. Accordingly, we have recognized the key
factors in CHIKV diagnosis and thus can help the doctor to reduce the number of medical tests
and save time and effort as well as save money. In addition, we have obtained two algorithms for
the suggested methods for decision-making problems. We hope that the presented framework
will be useful in future studies of COVID-19 and other diseases.
In the future, we are going to study the following subjects:
(I) Discussing the soft δ-rough models in the topological approach [16].
(II) Form a new frame consisting of an ideal structure and topology to improve the
approximation operators and accuracy values given in the present manuscript and applied
in [19].
(III) Investigating the suggested work for some other applications such as economic
applications [17].
(IV) Emphasis on the soft δ-rough concepts in some other frames such as N-soft sets [44], and
fuzzy rough sets [39].
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