Research article

On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus

  • Received: 06 December 2022 Revised: 16 January 2023 Accepted: 19 January 2023 Published: 03 February 2023
  • MSC : 11B68, 11B83, 05A15, 05A19

  • This paper aims to give generating functions for the new family of polynomials, which are called parametric types of the Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials by using Golden calculus. Numerous properties of these polynomials with their generating functions are investigated. These generating functions give us a generalization of some well-known generating functions for special polynomials such as Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials. Using the Golden differential operator technique, the functional equation method for generating function, we present some properties of these newly established polynomials.

    Citation: Can Kızılateş, Halit Öztürk. On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus[J]. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423

    Related Papers:

  • This paper aims to give generating functions for the new family of polynomials, which are called parametric types of the Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials by using Golden calculus. Numerous properties of these polynomials with their generating functions are investigated. These generating functions give us a generalization of some well-known generating functions for special polynomials such as Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials. Using the Golden differential operator technique, the functional equation method for generating function, we present some properties of these newly established polynomials.



    加载中


    [1] Q. M. Luo, On the Apostol-Bernoulli polynomials, Centr. Eur. J. Math., 2 (2004), 509–515. https://doi.org/10.2478/BF02475959 doi: 10.2478/BF02475959
    [2] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290–302. https://doi.org/10.1016/j.jmaa.2005.01.020 doi: 10.1016/j.jmaa.2005.01.020
    [3] Q. M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51 (2006), 631–642. https://doi.org/10.1016/j.camwa.2005.04.018 doi: 10.1016/j.camwa.2005.04.018
    [4] D. Q. Lu, H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl., 62 (2011), 3591–3602. https://doi.org/10.1016/j.camwa.2011.09.010 doi: 10.1016/j.camwa.2011.09.010
    [5] Q. M. Luo, Apostol-Euler polynomials of higher order and Gaussian hyper-geometric functions, Taiwanese J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883
    [6] Q. M. Luo, Extensions of the Genocchi polynomials and their Fourier expansions and integral representations, Osaka J. Math., 48 (2011), 291–309.
    [7] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452–2462. https://doi.org/10.1016/j.camwa.2011.07.031 doi: 10.1016/j.camwa.2011.07.031
    [8] H. Ozden, Y. Simsek, H. M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 60 (2010), 2779–2787. https://doi.org/10.1016/j.camwa.2010.09.031 doi: 10.1016/j.camwa.2010.09.031
    [9] N. Kilar, Y. Simsek, Computational formulas and identities for new classes of Hermite-based Milne-Thomson type polynomials: analysis of generating functions with Euler's formula, Math. Meth. Appl. Sci., 44 (2021), 6731–6762. https://doi.org/10.1002/mma.7220 doi: 10.1002/mma.7220
    [10] Y. Simsek, Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and $p$-adic $q$-integrals, Turk. J. Math., 42 (2018), 557–577. https://doi.org/10.3906/mat-1703-114 doi: 10.3906/mat-1703-114
    [11] Y. Simsek, Computation methods for combinatorial sums and Euler-type numbers related to new families of numbers, Math. Methods Appl. Sci., 40 (2017), 2347–2361. https://doi.org/10.1002/mma.4143 doi: 10.1002/mma.4143
    [12] H. M. Srivastava, Some generalizations and basic (or $q$-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., 5 (2011), 390–444.
    [13] S. Jin, M. C. Dagli, F. Qi, Degenerate Fubini-type polynomials and numbers, degenerate Apostol-Bernoulli polynomials and numbers, and degenerate Apostol-Euler polynomials and numbers, Axioms, 11 (2022), 477. https://doi.org/10.3390/axioms11090477 doi: 10.3390/axioms11090477
    [14] Y. He, T. Kim, General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials, J. Nonlinear Sci. Appl., 9 (2016), 4780–4797.
    [15] H. M. Srivastava, M. Masjed-Jamei, M. R. Beyki, Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Rocky Mountain J. Math., 49 (2019), 681–697.
    [16] M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 1–17. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1
    [17] M. Masjed-Jamei, M. R. Beyki, E. Omey, On a parametric kind of Genocchi polynomials, J. Inequal. Spec. Funct., 9 (2018), 68–81.
    [18] M. Masjed-Jamei, W. Koepf, Symbolic computation of some power-trigonometric series, J. Symb. Comput., 80 (2017), 273–284. https://doi.org/10.1016/j.jsc.2016.03.004 doi: 10.1016/j.jsc.2016.03.004
    [19] H. M. Srivastava, M. Masjed-Jamei, M. R. Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci., 12 (2018), 907–916.
    [20] H. M. Srivastava, C. Kizilates, A parametric kind of the Fubini-type polynomials, RACSAM, 113 (2019), 3253–3267. https://doi.org/10.1007/s13398-019-00687-4 doi: 10.1007/s13398-019-00687-4
    [21] O. K. Pashaev, S. Nalci, Golden quantum oscillator and Binet-Fibonacci calculus, J. Phys. A: Math. Theor., 45 (2012), 1–23. https://doi.org/10.1088/1751-8113/45/1/015303 doi: 10.1088/1751-8113/45/1/015303
    [22] O. K. Pashaev, Quantum calculus of Fibonacci divisors and infinite hierarchy of bosonic-fermionic golden quantum oscillators, Internat. J. Geom. Methods Modern Phys., 18 (2021), 1–32. https://doi.org/10.1142/S0219887821500754 doi: 10.1142/S0219887821500754
    [23] E. Krot, An introduction to finite fibonomial calculus, Centr. Eur. J. Math., 2 (2004), 754–766. https://doi.org/10.2478/BF02475975 doi: 10.2478/BF02475975
    [24] M. Ozvatan, Generalized golden-Fibonacci calculus and applications, Ph.D. thesis, Izmir Institute of Technology, 2018.
    [25] O. K. Pashaev, M. Ozvatan, Bernoulli-Fibonacci polynomials, arXiv, 2020. https://doi.org/10.48550/arXiv.2010.15080 doi: 10.48550/arXiv.2010.15080
    [26] S. Kus, N. Tuglu, T. Kim, Bernoulli $F$-polynomials and Fibo-Bernoulli matrices, Adv. Differ. Equ., 2019 (2019), 145. https://doi.org/10.1186/s13662-019-2084-6 doi: 10.1186/s13662-019-2084-6
    [27] N. Tuglu, E. Ercan, Some properties of Apostol Bernoulli Fibonacci and Apostol Euler Fibonacci polynomials, Icmee-2021, 32-34.
    [28] E. Gulal, N. Tuglu, Apostol Bernoulli-Fibonacci polynomials, Apostol Euler-Fibonacci polynomials, and their generating functions, unpublished paper.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(966) PDF downloads(88) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog