Research article

Some identities involving the bi-periodic Fibonacci and Lucas polynomials

  • Received: 02 November 2022 Revised: 04 December 2022 Accepted: 09 December 2022 Published: 26 December 2022
  • MSC : 11B37, 11B39

  • In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials.

    Citation: Tingting Du, Zhengang Wu. Some identities involving the bi-periodic Fibonacci and Lucas polynomials[J]. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294

    Related Papers:

    [1] Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379
    [2] Tingting Du, Zhengang Wu . Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(3): 7492-7510. doi: 10.3934/math.2024363
    [3] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136
    [4] Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569
    [5] Adikanda Behera, Prasanta Kumar Ray . Determinantal and permanental representations of convolved (u, v)-Lucas first kind p-polynomials. AIMS Mathematics, 2020, 5(3): 1843-1855. doi: 10.3934/math.2020123
    [6] Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423
    [7] Hong Kang . The power sum of balancing polynomials and their divisible properties. AIMS Mathematics, 2024, 9(2): 2684-2694. doi: 10.3934/math.2024133
    [8] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [9] Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718
    [10] Ümit Tokeşer, Tuğba Mert, Yakup Dündar . Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions. AIMS Mathematics, 2022, 7(5): 8645-8653. doi: 10.3934/math.2022483
  • In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials.



    For any real number x, the Fibonacci polynomials {Fn(x)} and Lucas polynomials {Ln(x)} are defined by the recurrence relations as follows:

    F0(x)=0,F1(x)=1,Fn(x)=xFn1(x)+Fn2(x),n2,

    and

    L0(x)=2,L1(x)=x,Ln(x)=xLn1(x)+Ln2(x),n2.

    For x=1, the Fibonacci and Lucas polynomials are well known, respectively, Fibonacci sequences {Fn} and Lucas sequences {Ln}. The various properties of {Fn(x)} and {Ln(x)} have been investigated by many authors; see [1,2,3,4,5]. In particular, in [6,7,8] the authors established a series of connection formulaes between Fibonacci polynomials, Lucas polynomials and Chebyshev polynomials.

    In [9], Yi and Zhang considered the convolution involving the Fibonacci polynomials:

    a1+a2++ak=nFa1+1(x)Fa2+1(x)Fak+1(x),

    where the summation is over all k-dimension nonnegative integer coordinates (a1,a2,,ak) such that a1+a2++ak=n, and k is any positive integer.

    In [10], Zhang obtained a series of identities that consists of the Fibonacci and Lucas sequences, by using generating functions for the second kind Chebyshev polynomials {Un(x)} and their partial derivatives to prove the following:

    a1+a2++ak+1=nFm(a1+1)Fm(a2+1)Fm(ak+1+1)=(i)mnFk+1m2kk!U(k)n+k(im2Lm),

    and

    a1+a2++ak+1=n+k+1Lma1Lma2Lmak+1=(i)m(n+k+1)2k!k+1h=0(im+22Lm)h(k+1h)U(k)n+2k+1h(im2Lm),

    where k,m are any positive integers, n,a1,a2,,ak+1 are nonnegative integers, i is the square root of 1, U(k)(x) denotes the k-order derivative of U(x) for x, and (k+1h)=(k+1)!h!(k+1h)!.

    In addition, in [11], the author introduced the bi-periodic Fibonacci polynomials {fn(x)}, defined by

    f0(x)=0,f1(x)=1,fn(x)={axfn1(x)+fn2(x),ifniseven;bxfn1(x)+fn2(x),ifnisodd,n2, (1.1)

    where a,b are any nonzero real numbers, and x is any real numbers. The bi-periodic Lucas polynomials {ln(x)} are defined by

    l0(x)=2,l1(x)=ax,ln(x)={bxln1(x)+ln2(x),ifniseven;axln1(x)+ln2(x),ifnisodd,n2, (1.2)

    where a,b are any nonzero real numbers, and x is any real numbers. For x=1, the bi-periodic Fibonacci and Lucas polynomials are well known, respectively, bi-periodic Fibonacci and Lucas sequences.

    Recently, in [12], Komatsu and Ramirez considered the convolution identities of order 2, 3 and 4 for the bi-periodic Fibonacci sequences {fn} are given with binomial cofficients. Other works related to convolved sequences can be found in [13,14,15,16,17,18,19,20].

    In this paper inspired by [10], we use the generating function of the first kind Chebyshev polynomials {Tn(x)}, the second kind Chebyshev polynomials {Un(x)} and their partial derivative to study the following two theorems:

    Theorem 1. Let {fn(x)} be bi-periodic Fibonacci polynomials defined by (1.1), for any positive integer k, nonnegative integer n,a1,a2,,ak+1. Then, we have the identity

    a1+a2++ak+1=n(ba)ξ(a1)+ξ(a2)++ξ(ak+1)2fa1+1(x)fa2+1(x)fak+1+1(x)=1k!n2h=0(1)h(n+kh)!i2hh!(n2h)!(abx)n2h,

    where z denotes the floor function, the greatest integer less than or equal to z, ξ(n)=nn2 is the parity function, and i is the square root of 1.

    Theorem 2. Let {ln(x)} be bi-periodic Lucas polynomials defined by (1.2), for any positive integer r, nonnegative integer m,a1,a2,,ar+1. Then, we have the identity

    a1+a2++ar+1=m(ba)ξ(a1)+ξ(a2)++ξ(ar+1   )2la1(x)la2(x)lar+1(x)=2r+1(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!i2hh!(m2h)!(abx)m2h,

    where z denotes the floor function, the greatest integer less than or equal to z, ξ(n)=nn2 is the parity function, and i is the square root of 1.

    From these two theorems we may immediately deduce the following corollaries:

    Corollary 1. Let {fn} be bi-periodic Fibonacci sequences and {ln} be bi-periodic Lucas sequences, for any positive integers k,r, and any nonnegative integers n,m. Then, we have the following:

    a1+a2++ak+1=n(ba)ξ(a1)+ξ(a2)++ξ(ak+1   )2fa1+1fa2+1fak+1   +1=1k!n2h=0(1)h(n+kh)!i2hh!(n2h)!(ab)n2h,

    and

    a1+a2++ar+1   =m(ba)ξ(a1)+ξ(a2)++ξ(ar+1   )2la1la2lar+1=2r+1(1t)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!i2hh!(m2h)!(ab)m2h,

    where z denotes the floor function, the greatest integer less than or equal to z, ξ(n)=nn2 is the parity function, and i is the square root of 1.

    Corollary 2. Let {Fn(x)} be Fibonacci polynomials and {Ln(x)} be Lucas polynomials, for any positive integers k,r, and any nonnegative integers n,m. Then, we have the following:

    a1+a2++ak+1=nFa1+1(x)Fa2+1(x)Fak+1+1(x)=1k!n2h=0(1)h(n+kh)!i2hh!(n2h)!xn2h,

    and

    a1+a2++ar+1=mLa1(x)La2(x)Lar+1(x)=2r+1(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!i2hh!(m2h)!xm2h,

    where z denotes the floor function, the greatest integer less than or equal to z, and i is the square root of 1.

    Corollary 3. Let {Fn} be Fibonacci sequences and {Ln} be Lucas sequences, for any positive integers k,r and any nonnegative integers n,m. Then, we have the following:

    a1+a2++ak+1=nFa1+1Fa2+1Fak+1+1=1k!n2h=0(1)h(n+kh)!i2hh!(n2h)!,

    and

    a1+a2++ar+1=mLa1La2Lar+1=2r+1(1t)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!i2hh!(m2h)!,

    where z denotes the floor function, the greatest integer less than or equal to z, and i is the square root of 1.

    In this section, we shall give several lemmas which are necessary in the proofs of the theorems. First, we introduce Chebyshev polynomials {Tn(x)} and {Un(x)}. For any positive integer n, the first kind Chebyshev polynomials {Tn(x)} are defined by

    T0(x)=1,T1(x)=x,Tn(x)=2xTn1(x)Tn2(x),n2,

    and the second kind Chebyshev polynomials {Un(x)} are defined by

    U0(x)=1,U1(x)=2x,Un(x)=2xUn1(x)Un2(x),n2.

    The generating function F(t,x) of the polynomials {Tn(x)} is given by

    F(t,x)=n=0Tn(x)tn=1xt12xt+t2,|x|<1,|t|<1, (2.1)

    and the generating function G(t,x) of the polynomials {Un(x)} is given by

    G(t,x)=n=0Un(x)tn=112xt+t2,|x|<1,|t|<1. (2.2)

    Their general expressions are

    Tn(x)=n2n2h=0(1)h(nh1)!h!(n2h)!(2x)n2h,|x|<1, (2.3)

    and

    Un(x)=n2h=0(1)h(nh)!h!(n2h)!(2x)n2h,|x|<1. (2.4)

    Lemma 1. [11] Let {fn(x)} be bi-periodic Fibonacci polynomials, {ln(x)} be bi-periodic Lucas polynomials, {Tn(x)} be Chebyshev polynomials of the first kind and {Un(x)} be Chebyshev polynomials of the second kind. For any positive integer n, we have the following identities:

    fn+1(x)=(ab)ξ(n)2inUn(ab2ix), (2.5)

    and

    ln(x)=2(ab)ξ(n)2inTn(ab2ix), (2.6)

    where i is the square root of 1, and ξ(n)=nn2 is the parity function.

    Lemma 2. Let {Un(x)} be Chebyshev polynomials of the second kind, and for any positive integer k and nonnegative integer n, we have the identity:

    a1+a2++ak+1=nUa1(x)Ua2(x)Uak+1(x)=1k!n2h=0(1)h(n+kh)!h!(n2h)!(2x)n2h.

    Proof. Noting that the degree of Un(x) has degree n and taking the partial derivative (x)k on both sides of (2.2), we have

    kG(t,x)xk=(2t)kk!(12xt+t2)k+1=n=0U(k)n+k(x)tn+k,

    where U(k)(x) denotes the k-order derivative of Un(x) for x. Then, we obtain that

    n=0(a1+a2++ak+1=nUa1(x)Ua2(x)Uak+1(x))tn=(n=0Un(x)tn)k+1=1(12xt+t2)k+1=1(2t)kk!kG(t,x)xk=12kk!n=0U(k)n+k(x)tn. (2.7)

    Comparing the coefficients of tn on both sides of Eq (2.7), we obtain that

    a1+a2++ak+1=nUa1(x)Ua2(x)Uak+1(x)=12kk!U(k)n+k(x). (2.8)

    From (2.4), we can deduce the kth derivative of Un+k(x),

    U(k)n+k(x)=n2h=0(1)h(n+khh)(n+k2h)k2n+k2hxn2h, (2.9)

    where the falling factorial polynomials (x)n are given by

    (x)0=1,(x)n=x(x1)(xn+1),n1. (2.10)

    Then, combining (2.8) and (2.9), we obtain

    a1+a2++ak+1=nUa1(x)Ua2(x)Uak+1(x)=1k!n2h=0(1)h(n+kh)!h!(n2i)!(2x)n2h.

    This completes the proof of the Lemma.

    Lemma 3. Let {Tn(x)} be Chebyshev polynomials of the first kind. For any positive integer r and nonnegative integer m, we have the identity

    a1+a2++ar+1=mTa1(x)Ta2(x)Tar+1(x)=(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!h!(m2h)!(2x)m2h.

    Proof. Noting that the degree of Tm(x) has degree m and taking the partial derivative (x)r on both sides of (2.1), we have

    rF(t,x)xr=(tt3)(2t)r1r!(12xt+t2)r+1=m=0T(r)m+r(x)tm+r,

    where T(r)(x) denotes the r-order derivative of Tm(x) for x. Then, we obtain that

    m=0(a1+a2++ar+1=mTa1(x)Ta2(x)Tar+1(x))tm=(m=0Tm(x)tm)r+1=(1xt)r+1(12xt+t2)r+1=(1xt)r+1(tt3)(2t)r1r!rF(t,x)xr=(1xt)r+1(1t2)2r1r!m=0T(r)m+r(x)tm. (2.11)

    Comparing the coefficients of tm on both sides of equation (2.11), we obtain that

    a1+a1++ar+1=mTa1(x)Ta2(x)Tar+1(x)=(1xt)r+1(1t2)2r1r!T(r)m+r(x). (2.12)

    From (2.3), we can deduce the rth derivative of Tm+r(x),

    T(r)m+r(x)=m+r2m2h=0(1)h1m+rh(m+rhh)2m+r2h(m+r2h)rxm2h. (2.13)

    Then, combining (2.12) and (2.13), where the condition (x)n is defined by (2.10), we obtain

    a1+a2++ar+1=mTa1(x)Ta2(x)Tar+1(x)=(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!h!(m2h)!(2x)m2h.

    This completes the proof of the Lemma.

    Proof of Theorem 1. By Lemma 2, we obtain that

    a1+a2++ak+1=nUa1(ab2ix)Ua2(ab2ix)Uak+1(ab2ix)=1k!n2h=0(1)h(n+kh)!h!(n2h)!(abix)n2h.

    By (2.5) of Lemma 1, we obtain that

    a1+a2++ak+1=nfa1+1(x)fa2+1(x)fak+1+1(x)(ab)ξ(a1)+ξ(a2)++ξ(ak+1)2ia1+a2++ak+1=1k!n2h=0(1)h(n+kh)!h!(n2h)!(abix)n2h.

    Therefore, we obtain

    a1+a2++ak+1=n(ba)ξ(a1)+ξ(a2)++ξ(ak+1)2fa1+1(x)fa2+1(x)fak+1+1(x)=1k!n2h=0(1)h(n+kh)!i2hh!(n2h)!(abx)n2h.

    This completes the proof of the Theorem.

    Proof of Theorem 2. By Lemma 3, we obtain that

    a1+a2++ar+1=mTa1(ab2ix)Ta2(ab2ix)Tar+1(ab2ix)=(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!h!(m2h)!(abix)m2h.

    By (2.6) of Lemma 1, we obtain that

    a1+a2++ak+1=mla1(x)la2(x)lar+1(x)2r+1(ab)ξ(a1)+ξ(a2)++ξ(ar+1)2ia1+a2++ar+1=(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!h!(m2h)!(abix)m2h.

    Therefore, we obtain

    a1+a2++ar+1=m(ba)ξ(a1)+ξ(a2)++ξ(ar+1)2la1(x)la2(x)lar+1(x)=2r+1(1xt)r+1(m+r)(1t2)r!m2h=0(1)h(m+rh1)!i2hh!(m2h)!(abx)m2h.

    This completes the proof of the Theorem.

    In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials. In the past, scholars considered the convolution of linear recursive polynomials. In this paper, we extend the previous research to non-linear recursive polynomials. Specifically, we consider the convolution formula of bi-periodic recursive polynomials. Furthermore, we hope to consider extending the convolution formula of t-periodic recursive polynomials.

    The authors express their gratitude to the referee for very helpful and detailed comments. Supported by the National Natural Science Foundation of China (Grant No. 11701448)

    All authors declare no conflicts of interest in this paper.



    [1] V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Q. , 11 (1973), 271–274.
    [2] Z. Wu, W. Zhang, The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl. , 2012 (2012), 134. https://doi.org/10.1186/1029-242X-2012-134 doi: 10.1186/1029-242X-2012-134
    [3] U. Dutta, P. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Math. , 4 (2019), 1569–1581. https://doi.org/10.3934/math.2019.6.1569 doi: 10.3934/math.2019.6.1569
    [4] T. Du, Z. Wu, On the reciprocal products of generalized Fibonacci sequences, J. Inequal. Appl. , 2022 (2022), 154. https://doi.org/10.1186/s13660-022-02889-8 doi: 10.1186/s13660-022-02889-8
    [5] P. Relhan, V. Verma, On the sum of reciprocals of Jacobsthal polynomials, J. Phys. Conf. Ser. , 1531 (2020), 012070. https://doi.org/10.1088/1742-6596/1531/1/012070 doi: 10.1088/1742-6596/1531/1/012070
    [6] W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
    [7] W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure. Appl. Math. , 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7
    [8] W. M. Abd-Elhameed, Y. H. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J. , 42 (2017), 347–361. https://doi.org/10.1007/s11139-015-9712-x doi: 10.1007/s11139-015-9712-x
    [9] Y. Yuan, W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart. , 40 (2002), 314–318.
    [10] W. Zhang, Some identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart. , 42 (2004), 149–154.
    [11] N. Yilmaz, A. Coskun, N. Taskara, On properties of bi-periodic Fibonacci and Lucas polynomials, AIP Conf. P. , 1863 (2017), 310002. https://doi.org/10.1063/1.4992478 doi: 10.1063/1.4992478
    [12] T. Komatsu, J. Ramírez, Convolutions of the bi-periodic Fibonacci numbers, Hacet. J. Math. Stat. , 49 (2020), 565–577. https://doi.org/10.15672/hujms.568340 doi: 10.15672/hujms.568340
    [13] T. Kim, D. Dolgy, D. Kim, J. Seo, Convolved fibonacci numbers and their applications, Ars Comb. , 135 (2016), 119–131. https://doi.org/10.48550/arXiv.1607.06380 doi: 10.48550/arXiv.1607.06380
    [14] Z. Chen, L. Qi, Some convolution formulae related to the second-order linear recurrence sequence, Symmetry, 11 (2019), 788. https://doi.org/10.3390/sym11060788 doi: 10.3390/sym11060788
    [15] E. Kılıç, Tribonacci sequences with certain indices and their sums, Ars Comb. , 86 (2008), 13–22.
    [16] T. Agoh, K. Dilcher, Higher-order convolutions for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 419 (2014), 1235–1247. https://doi.org/10.1016/j.jmaa.2014.05.050 doi: 10.1016/j.jmaa.2014.05.050
    [17] Y. He, T. Kim, A higher-order convolution for Bernoulli polynomials of the second kind, Appl. Math. Comput., 324 (2018), 51–58. https://doi.org/10.1016/j.amc.2017.12.014 doi: 10.1016/j.amc.2017.12.014
    [18] S. Falcon, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Appl. Math. Comput., 208 (2009), 180–185. https://doi.org/10.1016/j.amc.2008.11.031 doi: 10.1016/j.amc.2008.11.031
    [19] T. Kim, D. Kim, D. Dolgy, J. Kwon, Representing sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials, Mathematics, 7 (2019), 26. https://doi.org/10.3390/math7010026 doi: 10.3390/math7010026
    [20] W. M. Abd-Elhameed, N. A. Zeyada, New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials, Indian J. Pure. Appl. Math., 53 (2022), 1006–1016. https://doi.org/10.1007/s13226-021-00214-5 doi: 10.1007/s13226-021-00214-5
  • This article has been cited by:

    1. Waleed Mohamed Abd-Elhameed, Anna Napoli, New formulas of convolved Pell polynomials, 2024, 9, 2473-6988, 565, 10.3934/math.2024030
    2. Tingting Du, Zhengang Wu, Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials, 2024, 9, 2473-6988, 7492, 10.3934/math.2024363
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1779) PDF downloads(98) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog