Research article

Some identities involving the bi-periodic Fibonacci and Lucas polynomials

  • Received: 02 November 2022 Revised: 04 December 2022 Accepted: 09 December 2022 Published: 26 December 2022
  • MSC : 11B37, 11B39

  • In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials.

    Citation: Tingting Du, Zhengang Wu. Some identities involving the bi-periodic Fibonacci and Lucas polynomials[J]. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294

    Related Papers:

  • In this paper, by using generating functions for the Chebyshev polynomials, we have obtained the convolution formulas involving the bi-periodic Fibonacci and Lucas polynomials.



    加载中


    [1] V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Q. , 11 (1973), 271–274.
    [2] Z. Wu, W. Zhang, The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl. , 2012 (2012), 134. https://doi.org/10.1186/1029-242X-2012-134 doi: 10.1186/1029-242X-2012-134
    [3] U. Dutta, P. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Math. , 4 (2019), 1569–1581. https://doi.org/10.3934/math.2019.6.1569 doi: 10.3934/math.2019.6.1569
    [4] T. Du, Z. Wu, On the reciprocal products of generalized Fibonacci sequences, J. Inequal. Appl. , 2022 (2022), 154. https://doi.org/10.1186/s13660-022-02889-8 doi: 10.1186/s13660-022-02889-8
    [5] P. Relhan, V. Verma, On the sum of reciprocals of Jacobsthal polynomials, J. Phys. Conf. Ser. , 1531 (2020), 012070. https://doi.org/10.1088/1742-6596/1531/1/012070 doi: 10.1088/1742-6596/1531/1/012070
    [6] W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
    [7] W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure. Appl. Math. , 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7
    [8] W. M. Abd-Elhameed, Y. H. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J. , 42 (2017), 347–361. https://doi.org/10.1007/s11139-015-9712-x doi: 10.1007/s11139-015-9712-x
    [9] Y. Yuan, W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart. , 40 (2002), 314–318.
    [10] W. Zhang, Some identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart. , 42 (2004), 149–154.
    [11] N. Yilmaz, A. Coskun, N. Taskara, On properties of bi-periodic Fibonacci and Lucas polynomials, AIP Conf. P. , 1863 (2017), 310002. https://doi.org/10.1063/1.4992478 doi: 10.1063/1.4992478
    [12] T. Komatsu, J. Ramírez, Convolutions of the bi-periodic Fibonacci numbers, Hacet. J. Math. Stat. , 49 (2020), 565–577. https://doi.org/10.15672/hujms.568340 doi: 10.15672/hujms.568340
    [13] T. Kim, D. Dolgy, D. Kim, J. Seo, Convolved fibonacci numbers and their applications, Ars Comb. , 135 (2016), 119–131. https://doi.org/10.48550/arXiv.1607.06380 doi: 10.48550/arXiv.1607.06380
    [14] Z. Chen, L. Qi, Some convolution formulae related to the second-order linear recurrence sequence, Symmetry, 11 (2019), 788. https://doi.org/10.3390/sym11060788 doi: 10.3390/sym11060788
    [15] E. Kılıç, Tribonacci sequences with certain indices and their sums, Ars Comb. , 86 (2008), 13–22.
    [16] T. Agoh, K. Dilcher, Higher-order convolutions for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 419 (2014), 1235–1247. https://doi.org/10.1016/j.jmaa.2014.05.050 doi: 10.1016/j.jmaa.2014.05.050
    [17] Y. He, T. Kim, A higher-order convolution for Bernoulli polynomials of the second kind, Appl. Math. Comput., 324 (2018), 51–58. https://doi.org/10.1016/j.amc.2017.12.014 doi: 10.1016/j.amc.2017.12.014
    [18] S. Falcon, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Appl. Math. Comput., 208 (2009), 180–185. https://doi.org/10.1016/j.amc.2008.11.031 doi: 10.1016/j.amc.2008.11.031
    [19] T. Kim, D. Kim, D. Dolgy, J. Kwon, Representing sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials, Mathematics, 7 (2019), 26. https://doi.org/10.3390/math7010026 doi: 10.3390/math7010026
    [20] W. M. Abd-Elhameed, N. A. Zeyada, New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials, Indian J. Pure. Appl. Math., 53 (2022), 1006–1016. https://doi.org/10.1007/s13226-021-00214-5 doi: 10.1007/s13226-021-00214-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1499) PDF downloads(96) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog