Research article Special Issues

Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials

  • Received: 10 January 2024 Revised: 02 February 2024 Accepted: 05 February 2024 Published: 21 February 2024
  • MSC : 11B37, 11B39

  • In this paper, we considered the generalized bi-periodic Fibonacci polynomials, and obtained some identities related to generalized bi-periodic Fibonacci polynomials using the matrix theory. In addition, the generalized bi-periodic Lucas polynomial was defined by $ L_{n}\left (x \right) = bp\left (x \right) L_{n-1}\left (x \right)+q\left (x \right)L_{n-2}\left (x \right) $ (if $ n $ is even) or $ L_{n}\left (x \right) = ap\left (x \right) L_{n-1}\left (x \right)+q\left (x \right)L_{n-2}\left (x \right) $ (if $ n $ is odd), with initial conditions $ L_{0}\left (x \right) = 2 $, $ L_{1}\left (x \right) = ap\left (x \right) $, where $ p\left (x \right) $ and $ q\left (x \right) $ were nonzero polynomials in $ Q \left [ x \right ] $. We obtained a series of identities related to the generalized bi-periodic Fibonacci and Lucas polynomials.

    Citation: Tingting Du, Zhengang Wu. Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials[J]. AIMS Mathematics, 2024, 9(3): 7492-7510. doi: 10.3934/math.2024363

    Related Papers:

  • In this paper, we considered the generalized bi-periodic Fibonacci polynomials, and obtained some identities related to generalized bi-periodic Fibonacci polynomials using the matrix theory. In addition, the generalized bi-periodic Lucas polynomial was defined by $ L_{n}\left (x \right) = bp\left (x \right) L_{n-1}\left (x \right)+q\left (x \right)L_{n-2}\left (x \right) $ (if $ n $ is even) or $ L_{n}\left (x \right) = ap\left (x \right) L_{n-1}\left (x \right)+q\left (x \right)L_{n-2}\left (x \right) $ (if $ n $ is odd), with initial conditions $ L_{0}\left (x \right) = 2 $, $ L_{1}\left (x \right) = ap\left (x \right) $, where $ p\left (x \right) $ and $ q\left (x \right) $ were nonzero polynomials in $ Q \left [ x \right ] $. We obtained a series of identities related to the generalized bi-periodic Fibonacci and Lucas polynomials.



    加载中


    [1] W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
    [2] W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math., 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7
    [3] W. M. Abd-Elhameed, A. Napoli, Some novel formulas of Lucas polynomials via different approaches, Symmetry, 15 (2023), 185. https://doi.org/10.3390/sym15010185 doi: 10.3390/sym15010185
    [4] W. M. Abd-Elhameed, A. Napoli, New formulas of convolved Pell polynomials, AIMS Math., 9 (2024), 565–593. https://doi.org/10.3934/math.2024030 doi: 10.3934/math.2024030
    [5] W. M. Abd-Elhameed, Y. H. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J., 42 (2017), 347–361. https://doi.org/10.1007/s11139-015-9712-x doi: 10.1007/s11139-015-9712-x
    [6] Y. Yi, W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart, 40 (2002), 314–318.
    [7] V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart, 11 (1973), 271–274.
    [8] Z. Wu, W. Zhang, The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2012 (2012), 134. https://doi.org/10.1186/1029-242X-2012-134 doi: 10.1186/1029-242X-2012-134
    [9] U. K. Dutta, P. K. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Math., 4 (2019), 1569–1581. https://doi.org/10.3934/math.2019.6.1569 doi: 10.3934/math.2019.6.1569
    [10] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., 2001. https://doi.org/10.1002/9781118033067
    [11] R. Flórez, N. McAnally, A. Mukherjee, Identities for the generalized Fibonacci polynomial, arXiv, 2017. https://doi.org/10.48550/arXiv.1702.01855
    [12] A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos Solitons Fract., 42 (2009), 3179–3186. https://doi.org/10.1016/j.chaos.2009.04.048 doi: 10.1016/j.chaos.2009.04.048
    [13] R. Flórez, R. A. Higuita, A. Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, arXiv, 2018. https://doi.org/10.48550/arXiv.1701.06722
    [14] R. Flórez, R. A. Higuita, A. Mukherjee, Alternating sums in the Hosoya polynomial triangle, J. Integer Seq., 17 (2014), 14.9.5.
    [15] N. Yilmaz, A. Coskun, N. Taskara, On properties of bi-periodic Fibonacci and Lucas polynomials, AIP Conf. Proc., 1863 (2017), 310002. https://doi.org/10.1063/1.4992478 doi: 10.1063/1.4992478
    [16] T. Du, Z. Wu, Some identities involving the bi-periodic Fibonacci and Lucas polynomials, AIMS Math., 8 (2023), 5838–5846. https://doi.org/10.3934/math.2023294 doi: 10.3934/math.2023294
    [17] B. Guo, E. Polatli, F. Qi, Determinantal formulas and recurrent relations for bi-periodic Fibonacci and Lucas polynomials, In: S. K. Paikray, H. Dutta, J. N. Mordeson, New trends in applied analysis and computational mathematics, Springer, Singapore, 1356 (2021), 263–276. https://doi.org/10.1007/978-981-16-1402-6_18
    [18] Y. Taşyurdu, Bi-periodic generalized Fibonacci polynomials, Turk. J. Sci., 7 (2022), 157–167.
    [19] H. W. Gould, A history of the Fibonacci Q-matrix and a higher dimensional problem, Fibonacci Quart, 19 (1981), 250–257.
    [20] J. R. Silvester, Fibonacci properties by matrix methods, Math. Gaz., 63 (1979), 188–191. https://doi.org/10.2307/3617892 doi: 10.2307/3617892
    [21] S. P. Jun, K. H. Choi, Some properties of the generalized Fibonacci sequence $q_{n}$ by matrix methods, Korean J. Math., 24 (2016), 681–691. https://doi.org/10.11568/kjm.2016.24.4.681 doi: 10.11568/kjm.2016.24.4.681
    [22] E. Tan, A. B. Ekin, Some identities on conditional sequences by using matrix method, Miskolc Math. Notes, 18 (2017), 469–477. https://doi.org/10.18514/MMN.2017.1321 doi: 10.18514/MMN.2017.1321
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(772) PDF downloads(63) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog