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1. Introduction

The Fibonacci and Lucas polynomials are important in various fields such as number theory,
probability, numerical analysis, and physics. In addition, many famous polynomials, such as the Pell
polynomials, Pell Lucas polynomials, Tribonacci polynomials, etc., are generalizations of the
Fibonacci and Lucas polynomials. Many scholars discussed the Fibonacci polynomials and its
generalization; see [1–5]. This paper mainly extends linear recursive polynomials to nonlinearity and
discusses some basic properties of the generalized bi-periodic Fibonacci and Lucas polynomials.

The Fibonacci {un (x)} and Lucas {vn (x)} polynomials are defined by

u0 (x) = 0, u1 (x) = 1, un (x) = xun−1 (x) + un−2 (x) , n ≥ 2

and
v0 (x) = 2, v1 (x) = x, vn (x) = xvn−1 (x) + vn−2 (x) , n ≥ 2.
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When x = 1, we obtain Fibonacci {un} and Lucas {vn} sequences defined by

u0 = 0, u1 = 1, un = un−1 + un−2, n ≥ 2
and

v0 = 2, v1 = 1, vn = vn−1 + vn−2, n ≥ 2.

The Fibonacci {un} ({un (x)}) or Lucas {vn} ({vn (x)}) sequences (polynomials) have more interesting
properties and applications; see [6–10].

In [11], the generalized Fibonacci {Un (x)} and Lucas {Vn (x)} polynomials are defined by

U0 (x) = 0, U1 (x) = 1, Un (x) = p (x) Un−1 (x) + q (x) Un−2 (x) , n ≥ 2

and
V0 (x) = 2, V1 (x) = p (x) , Vn (x) = p (x) Vn−1 (x) + q (x) Vn−2 (x) , n ≥ 2,

where p (x) and q (x) are nonzero polynomials in Q [x]. For more consideration of generalized
polynomials {Un (x)} or {Vn (x)}, see [12–14].

In [15], the bi-periodic Fibonacci { fn (x)} and Lucas {ln (x)} polynomials are defined by

f0 (x) = 0, f1 (x) = 1, fn (x) =

ax fn−1 (x) + fn−2 (x) , if n is even and n ≥ 2,
bx fn−1 (x) + fn−2 (x) , if n is odd and n ≥ 3,

and

l0 (x) = 2, l1 (x) = ax, ln (x) =

bxln−1 (x) + ln−2 (x) , if n is even and n ≥ 2,
axln−1 (x) + ln−2 (x) , if n is odd and n ≥ 3,

where a and b are any nonzero real numbers. For more discussions of bi-periodic polynomials { fn (x)}
and {ln (x)}; see [16, 17].

In [18], the author defined a new kind of Fibonacci polynomials called the generalized bi-periodic
Fibonacci polynomial {Fn (x)}, which is defined by

F0 (x) = 0, F1 (x) = 1, Fn (x) =

ap (x) Fn−1 (x) + q (x) Fn−2 (x) , if n is even and n ≥ 2,
bp (x) Fn−1 (x) + q (x) Fn−2 (x) , if n is odd and n ≥ 3,

(1.1)

where a, b are nonzero real numbers and p (x) and q (x) are nonzero polynomials in Q [x]. They
obtained the following Binet formula:

Fm (x) =
 a1−ζ(m)

(ab)⌊
m
2 ⌋

 σm (x) − τm (x)
σ (x) − τ (x)

, m ≥ 0, (1.2)

where

σ (x) =
abp (x) +

√
a2b2 p2 (x) + 4abq (x)

2
,

τ (x) =
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

2
,

and
ζ (m) = m − 2

⌊m
2

⌋
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is the parity function, with ⌊·⌋ denoting the floor function.
In addition, they obtained a series of classical identities of the generalized bi-periodic Fibonacci

polynomial as follows:

(a) Generated functions

Gn (x, t) =
t + ap (x) t2 − q (x) t3

1 −
(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4 ;

(b) Generalized Catalan’s identity

aζ(m−r)b1−ζ(m−r)Fm−r (x) Fm+r (x) − aζ(m)b1−ζ(m)F2
m (x) = − (−q (x))m−r aζ(r)b1−ζ(r)F2

r (x) ;

(c) Generalized Cassini’s identity

aζ(m−1)bζ(m)Fm−1 (x) Fm+1 (x) − aζ(m)b1−ζ(m)F2
m (x) = −a (−q (x))m−1 ;

(d) Generalized d’Ocagne’s identity

aζ(mr+m)bζ(mr+r)Fm (x) Fr+1 (x) − aζ(mr+r)bζ(mr+m)Fm+1 (x) Fr (x) = − (−q (x))r aζ(m−r)Fm−r (x) ;

(e) Negative subscript terms

F−m (x) = (−1)m+1 (q (x))−m Fm (x) .

2. The generalized bi-periodic Fibonacci polynomial by matrix methods

Recently, some scholars considered the identities of recursive sequences (polynomials) by the
matrix theory. For example, in [19], the author defined the Fibonacci Q-matrix as follows:

Q =
(
1 1
1 0

)
,

so that

Qm =

(
um+1 um

um um−1

)
, n ≥ 1,

where {un} is a Fibonacci sequence. For more on considering recursive sequences (polynomials) by the
matrix theory; see [20–22].

In this section, we consider the generalized bi-periodic Fibonacci polynomial defined by a 2 × 2
matrix S and we give the mth power S m for any integer m.

Theorem 2.1. Let

S =
(
abp (x) bq (x)

a 0

)
, (2.1)

then, we have

S m = (ab)
m−ζ(m)

2

(
bζ(m)Fm+1 (x) a−ζ(m+1)bq (x) Fm (x)
aζ(m)Fm (x) bζ(m)q (x) Fm−1 (x)

)
, n ≥ 1, (2.2)
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where a and b are nonzero real numbers, and p (x) and q (x) are nonzero polynomials in Q [x],

ζ (m) = m − 2
⌊m

2

⌋
is the parity function, with ⌊·⌋ denoting the floor function. {Fn (x)} is the generalized bi-periodic
Fibonacci polynomial.

Proof. We prove (2.2) by mathematical induction. Obviously, the identity is true when m = 1,

S 1 =

(
bF2 (x) bq (x) F1 (x)
aF1 (x) bq (x) F0 (x)

)
=

(
abp (x) bq (x)

a 0

)
= S .

We assume that the identity is true with m. Next, we prove that the identity is true when m + 1.

S m+1 = S m · S = (ab)
m−ζ(m)

2

(
bζ(m)Fm+1 (x) a−ζ(m+1)bq (x) Fm (x)
aζ(m)Fm (x) bζ(m)q (x) Fm−1 (x)

)
·

(
abp (x) bq (x)

a 0

)
=

a 2+m−ζ(m)
2 b

2+m+ζ(m)
2 p (x) Fm+1 (x) + a

m+1−ζ(m+1)
2 b

2+m−ζ(m)
2 q (x) Fm (x) a

m−ζ(m)
2 b

2+m+ζ(m)
2 q (x) Fm+1 (x)

a
2+m+ζ(m)

2 b
2+m−ζ(m)

2 p (x) Fm (x) + a
m+2−ζ(m)

2 b
m+ζ(m)

2 q (x) Fm−1 (x) a
m+ζ(m)

2 b
2+m−ζ(m)

2 q (x) Fm (x)


= (ab)

m+1−ζ(m+1)
2

(
aζ(m+1)bp (x) Fm+1 (x) + bζ(m+1)q (x) Fm (x) a−ζ(m)bq (x) Fm+1 (x)
abζ(m+1) p (x) Fm (x) + aζ(m+1)q (x) Fm−1 (x) bζ(m+1)q (x) Fm (x)

)
= (ab)

m+1−ζ(m+1)
2

(
bζ(m+1)Fm+2 (x) a−ζ(m)bq (x) Fm+1 (x)
aζ(m+1)Fm+1 (x) bζ(m+1)q (x) Fm (x)

)
,

where the generalized bi-periodic Fibonacci polynomial is given by

F0 (x) = 0, F1 (x) = 1, Fm (x) = aζ(m+1)bζ(m) p (x) Fm−1 (x) + q (x) Fm−2 (x) , m ≥ 2, (2.3)

where a, b are nonzero real numbers and p (x), q (x) are nonzero polynomials in Q [x],

ζ (m) = m − 2
⌊m

2

⌋
is the parity function, with ⌊·⌋ denoting the floor function. □

Remark 2.1. The characteristic polynomial of S is

λ2 − abp (x) λ − abq (x) = 0.

Thus

σ (x) =
abp (x) +

√
a2b2 p2 (x) + 4abq (x)

2
and

τ (x) =
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

2
are the eigenvalues of S . We can diagonalize S to get S = P−1DP, so S m = P−1DmP, where P is
invertible and

D =
(
σ (x) 0

0 τ (x)

)
,
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The generalized bi-periodic Fibonacci polynomial may be expressed in the form

Fm (x) = Aσm (x) + Bτm (x) ,

where A and B are constants. When m = 0 and m = 1, we use the special value method to get the
explicit identity of the generalized bi-periodic Fibonacci polynomial.

Next, we get a series of identities of the generalized bi-periodic Fibonacci polynomial by the
matrix S .

Theorem 2.2. (Generalized Cassinis’s identity) Let {Fm (x)} be the generalized bi-periodic Fibonacci
polynomial. We have

aζ(m+1)bζ(m)Fm+1 (x) Fm−1 (x) − aζ(m)bζ(m+1)F2
m (x) = −a (−q (x))m−1 . (2.4)

Proof. According to the identity (2.2),

det (S m) = (ab)m−ζ(m)
(
b2ζ(m)q (x) Fm+1 (x) Fm−1 (x) − aζ(m)−ζ(m+1)bq (x) F2

m (x)
)

= am−1bmq (x)
(
aζ(m+1)bζ(m)Fm+1 (x) Fm−1 (x) − aζ(m)bζ(m+1)F2

m (x)
)

= det (S )m = (−abq (x))m .

Thus,
aζ(m+1)bζ(m)Fm+1 (x) Fm−1 (x) − aζ(m)bζ(m+1)F2

m (x) = −a (−q (x))m−1 .

□

Since S is invertible, and S m is also invertible, we have

(S m)−1 = S −m = (−q (x))−m (ab)
−n−ζ(m)

2

(
bζ(m)q (x) Fm−1 (x) −a−ζ(m+1)bq (x) Fm (x)
−aζ(m)Fm (x) bζ(m)Fm+1 (x)

)
. (2.5)

Theorem 2.3. (Generalized d’Ocagne’s identity) Let {Fn (x)} be the generalized bi-periodic Fibonacci
polynomial. We have

Fm+n+1 (x) = a−ζ(mn)bζ(mn)Fm+1 (x) Fn+1 (x) + aζ(mn+m+n)−1b1−ζ(mn+m+n)q (x) Fm (x) Fn (x) , (2.6)
Fm+n (x) = a−ζ(mn+n)bζ(mn+n)Fm (x) Fn+1 (x) + a−ζ(mn+m)bζ(mn+m)q (x) Fm−1 (x) Fn (x) , (2.7)

Fm+n−1 (x) = aζ(mn+m+n)−1b1−ζ(mn+m+n)Fm (x) Fn (x) + a−ζ(mn)bζ(mn)q (x) Fm−1 (x) Fn−1 (x) , (2.8)

Fm−n+1 (x) = − (−q (x))−n+1
[
a−ζ(mn)bζ(mn)Fm+1 (x) Fn−1 (x) −aζ(mn+m+n)−1b1−ζ(mn+m+n)Fm (x) Fn (x)

]
, (2.9)

Fm−n (x) = (−q (x))−n
[
a−ζ(mn+n)bζ(mn+n)Fm (x) Fn+1 (x) −a−ζ(mn+m)bζ(mn+m)Fm+1 (x) Fn (x)

]
, (2.10)

Fm−n (x) = − (−q (x))−n+1
[
a−ζ(mn+n)bζ(mn+n)Fm (x) Fn−1 (x) −a−ζ(mn+m)bζ(mn+m)Fm−1 (x) Fn (x)

]
, (2.11)

Fm−n−1 (x) = (−q (x))−n
[
a−ζ(mn)bζ(mn)Fm−1 (x) Fn+1 (x) −aζ(mn+m+n)−1b1−ζ(mn+m+n)Fm (x) Fn (x)

]
. (2.12)

Proof. According to the identity (2.2),

S m+n = (ab)
m+n−ζ(m+n)

2

(
bζ(m+n)Fm+n+1 (x) a−ζ(m+n+1)bq (x) Fm+n (x)
aζ(m+n)Fm+n (x) bζ(m+n)q (x) Fm+n−1 (x)

)
(2.13)
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and

S m · S n = (ab)
m+n−ζ(m)−ζ(n)

2

×


bζ(m)+ζ(n)Fm+1 (x) Fn+1 (x) a−ζ(m+1)b1+ζ(n)q (x) Fm (x) Fn+1 (x)

+aζ(m)−ζ(n+1)bq (x) Fm (x) Fn (x) +a−ζ(n+1)b1+ζ(m)q2 (x) Fm−1 (x) Fn (x)

aζ(n)bζ(m)Fm+1 (x) Fn (x) aζ(n)−ζ(m+1)bq (x) Fm (x) Fn (x)
+aζ(m)bζ(n)q (x) Fm (x) Fn−1 (x) +bζ(m)+ζ(n)q2 (x) Fm−1 (x) Fn−1 (x)


.

(2.14)

Since
S m+n = S mS n,

the corresponding entries in identities (2.13) and (2.14) are equal, so we obtain (2.6)–(2.8), where

(f) ζ (m + n) − ζ (m) − ζ (n) = −2ζ (mn),

(g) ζ (m + n) + ζ (m) + ζ (n) = 2ζ (mn + m + n),

(h) ζ (m + n) − ζ (m) + ζ (n) = 2ζ (mn + n),

(i) ζ (m + n) + ζ (m) − ζ (n) = 2ζ (mn + m),

(j) ζ (m + n + 1) − ζ (m + 1) − ζ (n) = −2ζ (mn + n),

(k) ζ (m + n + 1) − ζ (m) − ζ (n + 1) = −2ζ (mn + m).

In addition, we have

S m−n = (ab)
m−n−ζ(m−n)

2

(
bζ(m−n)Fm−n+1 (x) a−ζ(m−n+1)bq (x) Fm−n (x)
aζ(m−n)Fm−n (x) bζ(m−n)q (x) Fm−n−1 (x)

)
(2.15)

and

S m · S −n = (−q (x))−n+1 (ab)
m−n−ζ(m)−ζ(n)

2

×


bζ(m)+ζ(n)Fm+1 (x) Fn−1 (x) a−ζ(m+1)b1+ζ(n)Fm (x) Fn+1 (x)
−aζ(n)−ζ(m+1)bFm (x) Fn (x) −a−ζ(n+1)b1+ζ(m)Fm+1 (x) Fn (x)

aζ(m)bζ(n)Fm (x) Fn−1 (x) bζ(n)+ζ(m)Fm−1 (x) Fn+1 (x)
−aζ(n)bζ(m)Fm−1 (x) Fn (x) −aζ(m)−ζ(n+1)bFm (x) Fn (x)


.

(2.16)

Since
S m−n = S mS −n,

the corresponding entries in identities (2.15) and (2.16) are equal, so we obtain (2.9)–(2.12), where

(l) ζ (m − n) − ζ (m) − ζ (n) = −2ζ (mn),

(m) ζ (m − n) + ζ (m) + ζ (n) = 2ζ (mn + m + n),

(n) ζ (m − n) + ζ (m) − ζ (n) = 2ζ (mn + m),

(o) ζ (m − n) − ζ (m) + ζ (n) = 2ζ (mn + n). □
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Theorem 2.4. (Sum involving binomial coefficients) Let {Fm (x)} be the generalized bi-periodic
Fibonacci polynomial. We have

F2m (x) =
m∑

k=0

(
m
k

)
a

k+ζ(k)
2 b

k−ζ(k)
2 pk (x) qm−k (x) Fk (x) , (2.17)

F2m+1 (x) =
m∑

k=0

(
m
k

)
a

k−ζ(k)
2 b

k+ζ(k)
2 pk (x) qm−k (x) Fk+1 (x) , (2.18)

F2m−1 (x) =
m∑

k=0

(
m
k

)
a

k−ζ(k)
2 b

k+ζ(k)
2 pk (x) qm−k (x) Fk−1 (x) , (2.19)

F−2m (x) = q−m (x)
m∑

k=0

(
m
k

)
(−1)k a

k+ζ(k)
2 b

k−ζ(k)
2 pk (x) F−k (x) , (2.20)

F−2m+1 (x) = q−m (x)
m∑

k=0

(
m
k

)
(−1)k a

k−ζ(k)
2 b

k+ζ(k)
2 pk (x) F−k+1 (x) , (2.21)

F−2m−1 (x) = q−m (x)
n∑

k=0

(
m
k

)
(−1)k pk (x) a

k−ζ(k)
2 b

k+ζ(k)
2 F−k−1 (x) . (2.22)

Proof. According to Cayley Hamilton’s theorem, the following matrix S identity is obtained:

S 2 − abp (x) S − abq (x) I = 0,

then (
S 2

)m
= (abp (x) S + abq (x) I)m = (ab)m

m∑
k=0

(
m
k

)
(p (x) S )k (q (x))m−k .

We obtain

(ab)m
(
F2m+1 (x) a−1bq (x) F2m (x)
F2m (x) q (x) F2m−1 (x)

)
= (ab)m

m∑
k=0

(
m
k

)
pk (x) qm−k (x) (ab)

k−ζ(k)
2

(
bζ(k)Fk+1 (x) a−ζ(k+1)bq (x) Fk (x)
aζ(k)Fk (x) bζ(k)q (x) Fk−1 (x)

)
. (2.23)

The corresponding entries in identity (2.23) are equal, so we obtain (2.17)–(2.19).
Thus,

S −1 =

(
0 a−1

b−1q−1 (x) −p (x) q−1 (x)

)
.

According to Cayley Hamilton’s theorem, the following matrix S −1 identity is obtained:

S −2 + p (x) q−1 (x) S −1 − a−1b−1q−1 (x) I = 0,

then, (
S −2

)m
=

(
a−1b−1q−1 (x) I − p (x) q−1 (x) S −1

)m
= q−m (x)

m∑
k=0

(
m
k

)
(−1)k pk (x) S −k (ab)k−m .

We obtain

(ab)−m
(
F−2m+1 (x) a−1bq (x) F−2m (x)
F−2m (x) q (x) F−2m−1 (x)

)
= (abq (x))−m

m∑
k=0

(
m
k

)
(−1)k pk (x) (ab)

k−ζ(k)
2

(
bζ(k)F−k+1 (x) a−ζ(k+1)bq (x) F−k (x)
aζ(k)F−k (x) bζ(k)q (x) F−k−1 (x)

)
. (2.24)

The corresponding entries in identity (2.24) are equal, so we obtain (2.20)–(2.22). □
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3. The generalized bi-periodic Lucas polynomial

Inspired by [18], in this section, we define the generalized bi-periodic Lucas polynomial {Ln (x)} as
follows:

Definition 3.1. The generalized bi-periodic Lucas polynomial is defined by

L0 (x) = 2, L1 (x) = ap (x)

and

Ln (x) =

bp (x) Ln−1 (x) + q (x) Ln−2 (x) , if n is even and n ≥ 2,
ap (x) Ln−1 (x) + q (x) Ln−2 (x) , if n is odd and n ≥ 3,

where a and b are nonzero real numbers, and p (x), q (x) are nonzero polynomials in Q [x].
According to the definition, we obtain another expression of the generalized bi-periodic Lucas

polynomial as follows:

Lm (x) = aζ(m)b1−ζ(m) p (x) Lm−1 (x) + q (x) Lm−2 (x) , m ≥ 2, (3.1)

where
ζ (m) = m − 2

⌊m
2

⌋
is the parity function, with ⌊·⌋ denoting the floor function. The characteristic polynomial of the
generalized bi-periodic Lucas polynomial is

t2 − p (x) abt − q (x) ab = 0,

and the roots are

σ (x) =
abp (x) +

√
a2b2 p2 (x) + 4abq (x)

2
and

τ (x) =
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

2
.

We have:

(p) σ (x) + τ (x) = abp (x),

(q) σ (x) − τ (x) =
√

p2 (x) a2b2 + 4q (x) ab,

(r) σ (x) τ (x) = −abq (x).

Theorem 3.1. The generating functions of the generalized bi-periodic Lucas polynomial {Lm (x)} are

Tm (x, t) =
∞∑

m=0

Lm (x) tm

=
2 + ap (x) t −

(
abp2 (x) + 2q (x)

)
t2 + ap (x) q (x) t3

1 −
(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4 .

AIMS Mathematics Volume 9, Issue 3, 7492–7510.
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Lemma 3.1. The generalized bi-periodic Lucas {Lm (x)} polynomial satisfy the following identities

L2m (x) =
(
abp2 (x) + 2q (x)

)
L2m−2 (x) − q2 (x) L2m−4 (x) (3.2)

and
L2m+1 (x) =

(
abp2 (x) + 2q (x)

)
L2m−1 (x) − q2 (x) L2m−3 (x) . (3.3)

Proof. By identity (3.1),

L2m (x) = bp (x) L2m−1 (x) + q (x) L2m−2 (x)

= bp (x)
[
ap (x) L2m−2 (x) + q (x) L2m−3 (x)

]
+ q (x) L2m−2 (x)

=
[
abp2 (x) + q (x)

]
L2m−2 (x) + bp (x) q (x) L2m−3 (x)

=
[
abp2 (x) + q (x)

]
L2m−2 (x) + q (x) L2m−2 (x) − q2 (x) L2m−4 (x)

=
[
abp2 (x) + 2q (x)

]
L2m−2 (x) − q2 (x) L2m−4 (x)

and

L2m+1 (x) = ap (x) L2m (x) + q (x) L2m−1 (x)

= ap (x)
[
bp (x) L2m−1 (x) + q (x) L2m−2 (x)

]
+ q (x) L2m−1 (x)

=
[
abp2 (x) + q (x)

]
L2m−1 (x) + ap (x) q (x) L2m−2 (x)

=
[
abp2 (x) + q (x)

]
L2m−1 (x) + q (x) L2m−1 (x) − q2 (x) L2m−3 (x)

=
[
abp2 (x) + 2q (x)

]
L2m−1 (x) − q2 (x) L2m−3 (x) .

□

Proof of Theorem 3.1. According to the definition of the generating functions of the generalized bi-
periodic Lucas polynomial, we have

Tm (x, t) = T e
m (x, t) + T o

m (x, t)

=

∞∑
k=0

L2k (x) t2k +

∞∑
k=0

L2k+1 (x) t2k+1.

To begin, we consider T e
m (x, t),

T e
m (x, t) =

∞∑
k=0

L2k (x) t2k = L0 (x) + L2 (x) t2 + L4 (x) t4 + · · · , (3.4)

−
(
abp2 (x) + 2q (x)

)
t2T e

m (x, t) = −
(
abp2 (x) + 2q (x)

) ∞∑
k=0

L2k (x) t2k+2, (3.5)

q2 (x) t4T e
m (x, t) = q2 (x)

∞∑
k=0

L2k (x) t2k+4. (3.6)
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Contact (3.4)–(3.6) and Lemma 3.1. We obtain{
1 −

(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4

}
T e

m (x, t)

= L0 (x) + L2 (x) t2 +

∞∑
k=2

L2k (x) t2k −
(
abp2 (x) + 2q (x)

) ∞∑
k=0

L2k (x) t2k+2 + q2 (x)
∞∑

k=0

L2k (x) t2k+4

= 2 +
(
abp2 (x) + 2q (x)

)
t2 +

∞∑
k=2

L2k (x) t2k −
(
abp2 (x) + 2q (x)

)
2t2

−
(
abp2 (x) + 2q (x)

) ∞∑
k=2

L2k−2 (x) t2k + q2 (x)
∞∑

k=2

L2k−4 (x) t2k

= 2 −
(
abp2 (x) + 2q (x)

)
t2 +

∞∑
k=2

{
L2k (x) −

(
abp2 (x) + 2q (x)

)
L2k−2 (x) + q2 (x) L2k−4 (x)

}
t2k

= 2 −
(
abp2 (x) + 2q (x)

)
t2.

Therefore,

T e
m (x, t) =

2 −
(
abp2 (x) + 2q (x)

)
t2

1 −
(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4 . (3.7)

Next, we consider T o
m (x, t),

T o
m (x, t) =

∞∑
k=0

L2k+1 (x) t2k+1 = L1 (x) t + L3 (x) t3 + L5 (x) t5 + · · · , (3.8)

−
(
abp2 (x) + 2q (x)

)
t2T o

m (x, t) = −
(
abp2 (x) + 2q (x)

) ∞∑
k=0

L2k+1 (x) t2k+3, (3.9)

q2 (x) t4T o
m (x, t) = q2 (x)

∞∑
k=0

L2k+1 (x) t2k+5. (3.10)

Contact (3.8)–(3.10) and Lemma 3.1. We obtain{
1 −

(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4

}
T o

m (x, t)

= L1 (x) t + L3 (x) t3 +

∞∑
k=2

L2k+1 (x) t2k+1 −
(
abp2 (x) + 2q (x)

) ∞∑
k=0

L2k+1 (x) t2k+3 + q2 (x)
∞∑

k=0

L2k+1 (x) t2k+5

= ap (x) t +
(
a2bp3 (x) + 3ap (x) q (x)

)
t3 +

∞∑
k=2

L2k+1 (x) t2k+1 −
(
a2bp3 (x) + 2ap (x) q (x)

)
t3

−
(
abp2 (x) + 2q (x)

) ∞∑
k=2

L2k−1 (x) t2k+1 + q2 (x)
∞∑

k=2

L2k−3 (x) t2k+1

= ap (x) t + ap (x) q (x) t3 +

∞∑
k=2

{
L2k+1 (x) −

(
abp2 (x) + 2q (x)

)
L2k−1 (x) + q2 (x) L2k−3 (x)

}
t2k+1

= ap (x) t + ap (x) q (x) t3.
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Thus,

T o
m (x, t) =

ap (x) t + ap (x) q (x) t3

1 −
(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4 . (3.11)

By (3.7) and (3.11), we have

Tm (x, t) =
2 + ap (x) t −

(
abp2 (x) + 2q (x)

)
t2 + ap (x) q (x) t3

1 −
(
abp2 (x) + 2q (x)

)
t2 + q2 (x) t4 .

□

Theorem 3.2. The Binet identity of the generalized bi-periodic Lucas polynomial is

Lm (x) =
aζ(m)

(ab)⌊
m+1

2 ⌋
(σm (x) + τm (x)) , (3.12)

where

σ (x) =
abp (x) +

√
a2b2 p2 (x) + 4abq (x)

2
,

τ (x) =
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

2
,

and
ζ (m) = m − 2

⌊m
2

⌋
is the parity function, with ⌊·⌋ denoting the floor function.

Proof. We prove (3.12) by mathematical induction. Obviously, the identity is true when m = 0 and
m = 1. We assume that the identity is true with m. Next, we prove that the identity is true when m + 1.

According to the identity (3.1) and mathematical induction, we have

Lm+1 (x) = aζ(m+1)b
1−ζ(m+1)

p (x) Lm (x) + q (x) Lm−1 (x)

= aζ(m+1)b
1−ζ(m+1)

p (x)

 aζ(m)

(ab)⌊
m+1

2 ⌋
(σm (x) + τm (x))

 + q (x)

 aζ(m−1)

(ab)⌊
m
2 ⌋

(
σm−1 (x) + τm−1 (x)

)
= aζ(m+1)σm−1 (x)

aζ(m)b1−ζ(m+1) p (x)σ (x)

(ab)⌊
m+1

2 ⌋
+

q (x)

(ab)⌊
m
2 ⌋


+ aζ(m+1)τm−1 (x)

aζ(m)b1−ζ(m+1) p (x) τ (x)

(ab)⌊
m+1

2 ⌋
+

q (x)

(ab)⌊
m
2 ⌋


= aζ(m+1)σm−1 (x)

 abp (x)σ (x)

a1−ζ(m)bζ(m+1) (ab)⌊
m+1

2 ⌋
+

abq (x)

(ab)⌊
m
2 ⌋+1


+ aζ(m+1)τm−1 (x)

 abp (x) τ (x)

a1−ζ(m)bζ(m+1) (ab)⌊
m+1

2 ⌋
+

abq (x)

(ab)⌊
m
2 ⌋+1


= aζ(m+1)σm−1 (x)

ab (p (x)σ (x) + q (x))

(ab)⌊
m
2 ⌋+1

 + aζ(m+1)τm−1 (x)

ab (p (x) τ (x) + q (x))

(ab)⌊
m
2 ⌋+1


=

aζ(m+1)

(ab)⌊
m
2 ⌋+1

[
σm+1 (x) + τm+1 (x)

]
,
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where
(s) a1−ζ(m)bζ(m+1) (ab)⌊

m+1
2 ⌋ = (ab)⌊

m
2 ⌋+1,

(t) p (x)σ (x) + q (x) = σ
2(x)
ab ,

(u) p (x) τ (x) + q (x) = τ
2(x)
ab . □

Theorem 3.3. Negative subscript terms of the generalized bi-periodic Lucas polynomial {Ln (x)} are

L−m (x) = (−1)m q−m (x) Lm (x) .

Proof. According to the identity (3.12),

L−m (x) =
aζ(−m)

(ab)⌊
−m+1

2 ⌋

(
σ−m (x) + τ−m (x)

)
= (−1)m

·
aζ(−m)

(ab)⌊
−m+1

2 ⌋

{
σm (x) + τm (x)

(abq (x))m

}
= (−1)m q−m (x)

 aζ(m)

(ab)⌊
m+1

2 ⌋

 (σm (x) + τm (x)) = (−1)m q−m (x) Lm (x) .

□

Theorem 3.4. The generalized Catalan’s identity of the generalized bi-periodic Lucas polynomial
{Ln (x)} is

a1−ζ(m−r)bζ(m−r)Lm−r (x) Lm+r (x) − a1−ζ(m)bζ(m)L2
m (x) = aζ(r+1)bζ(r) (−q (x))m−r L2

r (x) − 4a (−q (x))m .

Proof. According to the identity (3.12),

a1−ζ(m−r)bζ(m−r)Lm−r (x) Lm+r (x) − a1−ζ(m)bζ(m)L2
m (x)

= a1−ζ(m−r)bζ(m−r)
·

aζ(m−r)

(ab)⌊
m−r+1

2 ⌋

aζ(m+r)

(ab)⌊
m+r+1

2 ⌋

(
σm−r (x) + τm−r (x)

) (
σm+r (x) + τm+r (x)

)
− a1−ζ(m)bζ(m)

 aζ(m)

(ab)⌊
m+1

2 ⌋

2

(σm (x) + τm (x))2

=
a1+ζ(m+r)bζ(m−r)

(ab)m+1−ζ(m+1−r)

{
σ2m (x) + (σ (x) τ (x))m−r

(
σ2r (x) + τ2r (x)

)
+ τ2m (x)

}
−

a1+ζ(m)bζ(m)

(ab)m+1−ζ(m+1)

(
σ2m (x) + 2σm (x) τm (x) + τ2m (x)

)
=

a
(ab)m

{
σ2m (x) + (σ (x) τ (x))m−r

(
σ2r (x) + τ2r (x)

)
+ τ2m (x)

}
−

a
(ab)m

(
σ2m (x) + 2σm (x) τm (x) + τ2m (x)

)
=

a
(ab)m

{
[σ (x) τ (x)]m−r

(
σ2r (x) + τ2r (x)

)
− 2σm (x) τm (x)

}
=

a (σ (x) τ (x))m−r

(ab)m

(
σ2r (x) + τ2r (x) − 2σr (x) τr (x)

)
=

a (σ (x) τ (x))m−r

(ab)m

{
(σr (x) + τr (x))2

− 4σr (x) τr (x)
}

=
a (−q (x))m−r

(ab)r (σr (x) + τr (x))2
− 4a (−q (x))m

= aζ(r+1)bζ(r) (−q (x))m−r L2
r (x) − 4a (−q (x))m ,
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where

(v)
⌊

m−r+1
2

⌋
+

⌊
m+r+1

2

⌋
= m + 1 − ζ (m + 1 − r). □

When r = 1, we have:

Corollary 3.1. The generalized Cassini’s identity of the generalized bi-periodic Lucas polynomial
{Ln (x)} is

aζ(m)b1−ζ(m)Lm−1 (x) Lm+1 (x) − a1−ζ(m)bζ(m)L2
n (x) = a2b (−q (x))m−1 p2 (x) − 4a (−q (x))m .

Theorem 3.5. Let {Fn (x)} be the generalized bi-periodic Fibonacci and {Ln (x)} be the Lucas
polynomials. We get the relations between {Fn (x)} and {Ln (x)} as follows:

Fm+1 (x) + q (x) Fm−1 (x) = Lm (x) , (3.13)

Lm+1 (x) + q (x) Lm−1 (x) =
(
p2 (x) ab + 4q (x)

)
Fm (x) , (3.14)

Fm+2 (x) − q2 (x) Fm−2 (x) = aζ(m+1)bζ(m) p (x) Lm (x) , (3.15)

Lm+2 (x) − q2 (x) Lm−2 (x) = aζ(m)bζ(m+1)
(
p2 (x) ab + 4q (x)

)
p (x) Fm (x) . (3.16)

Proof. We prove only (3.13), and other identities are proved similarly. According to the identities (1.2)
and (3.12),

(ab)⌊
m+1

2 ⌋

aζ(m) Fm+1 (x) + abq (x) ·
(ab)⌊

m−1
2 ⌋

aζ(m) Fm−1 (x) =
σm+1 (x) − τm+1 (x)
σ (x) − τ (x)

+ abq (x) ·
σm−1 (x) − τm−1 (x)
σ (x) − τ (x)

=
σm (x)

(
σ (x) + abq(x)

σ(x)

)
− τm (x)

(
τ (x) + abq(x)

τ(x)

)
σ (x) − τ (x)

= σm (x) + τm (x) =
(ab)⌊

m+1
2 ⌋

aζ(n) Lm (x) .

□

Theorem 3.6. Let {Fn (x)} be the generalized bi-periodic Fibonacci and {Ln (x)} be the Lucas
polynomials. We have the following identity:(

b
a

)ζ(mn+n)

Fm (x) Ln (x) +
(
b
a

)ζ(mn+m)

Fn (x) Lm (x) = 2Fm+n (x) , (3.17)

(
b
a

)ζ(mn)

Lm (x) Ln (x) +
(a
b

)ζ(mn+m+n)
(
a2b2 p2 (x) + 4abq (x)

a2

)
Fm (x) Fn (x) = 2Lm+n (x) . (3.18)

Proof. According to the identities (1.2) and (3.12),

(ab)⌊
m
2 ⌋+⌊

n+1
2 ⌋

a1−ζ(m)+ζ(n) Fm (x) Ln (x) +
(ab)⌊

m+1
2 ⌋+⌊

n
2⌋

a1−ζ(n)+ζ(m) Fn (x) Lm (x) =
2 (σm+n (x) − τm+n (x))
σ (x) − τ (x)

=
2 (ab)⌊

m+n
2 ⌋

a1−ζ(m+n) Fm+n (x) .
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Similary, we get

(ab)⌊
m+1

2 ⌋+⌊
n+1

2 ⌋

aζ(m)+ζ(n) Lm (x) Ln (x) +
(ab)⌊

m
2 ⌋+⌊

n
2⌋ (σ (x) − τ (x))2

a2−ζ(n)−ζ(m) Fm (x) Fn (x)

= (σm (x) + τm (x)) (σn (x) + τn (x)) + (σm (x) − τm (x)) (σn (x) − τn (x))

= 2
(
σn+m (x) + τn+m (x)

)
=

2 (ab)⌊
m+n+1

2 ⌋

aζ(m+n) Lm+n (x) ,

where

(w)
⌊

m
2

⌋
+

⌊
n+1

2

⌋
−

⌊
m+n

2

⌋
= ζ (mn + n),

(x)
⌊

n
2

⌋
+

⌊
m+1

2

⌋
−

⌊
m+n

2

⌋
= ζ (mn + m),

(y)
⌊

n+1
2

⌋
+

⌊
m+1

2

⌋
−

⌊
m+n+1

2

⌋
= ζ (mn),

(z)
⌊

n
2

⌋
+

⌊
m
2

⌋
−

⌊
m+n+1

2

⌋
= −ζ (mn + m + n). □

Theorem 3.7. Let {Fn (x)} be the generalized bi-periodic Fibonacci and {Ln (x)} be the Lucas
polynomials, then we obtain the following identities

m∑
k=0

(
m
k

)
aζ(k) (ab)⌊

k
2⌋ pk (x) qm−k (x) Fk (x) = F2m (x) (3.19)

and
m∑

k=0

(
m
k

)
aζ(k+1) (ab)⌊

k+1
2 ⌋ pk (x) qm−k (x) Lk (x) = aL2m (x) . (3.20)

Proof. We prove only (3.19), and (3.20) is proved similarly. According to the identity (1.2),
m∑

k=0

(
m
k

)
aζ(k) (ab)⌊

k
2⌋ pk (x) qm−k (x) Fk (x)

=

m∑
k=0

(
m
k

)
aζ(k) (ab)⌊

k
2⌋ pk (x) qm−k (x) ·

a1−ζ(k)

(ab)⌊
k
2⌋
·
σk (x) − τk (x)
σ (x) − τ (x)

=

m∑
k=0

(
m
k

)
apk (x) qm−k (x) ·

σk (x) − τk (x)
σ (x) − τ (x)

=
a

σ (x) − τ (x)

 m∑
k=0

(
m
k

)
pk (x)σk (x) qm−k (x) −

m∑
k=0

(
m
k

)
pk (x) τk (x) qm−k (x)


=

a
σ (x) − τ (x)

{(σ (x) p (x) + q (x))m
− (τ (x) p (x) + q (x))m

}

=
a

σ (x) − τ (x)

((
σ2 (x)

ab

)m

−

(
τ2 (x)

ab

)m)
=

a
(ab)m

(
σ2m (x) − τ2m (x)
σ (x) − τ (x)

)
= F2m (x) .

□
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Theorem 3.8. The sum of binomial coefficients of generalized bi-periodic Fibonacci {Fm (x)} and
Lucas {Lm (x)} polynomials are

Fm (x) =
2a1−ζ(m)

2m (ab)⌊
m
2 ⌋
·

⌊m−1
2 ⌋∑

k=0

(
m

2k + 1

)
(abp (x))m−2k−1

(
a2b2 p2 (x) + 4abq (x)

)k
, (3.21)

Lm (x) =
2aζ(m)

2m (ab)⌊
m+1

2 ⌋
·

⌊m
2 ⌋∑

k=0

(
m
2k

)
(abp (x))m−2k

(
a2b2 p2 (x) + 4abq (x)

)k
. (3.22)

Proof. By

σ (x) =
abp (x) +

√
a2b2 p2 (x) + 4abq (x)

2
and

τ (x) =
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

2
,

we have

σm (x) − τm (x)

= 2−m
((

abp (x) +
√

a2b2 p2 (x) + 4abq (x)
)m
−

(
abp (x) −

√
a2b2 p2 (x) + 4abq (x)

)m)
= 2−m

 m∑
k=0

(
m
k

)
pm−k (x) am−kbm−k

( √
a2b2 p2 (x) + 4abq (x)

)k

−

m∑
k=0

(
m
k

)
pm−k (x) am−kbm−k

(
−

√
a2b2 p2 (x) + 4abq (x)

)k


= 2−m+1
⌊m−1

2 ⌋∑
k=0

(
m

2k + 1

)
pm−2k−1 (x) am−2k−1bm−2k−1

( √
a2b2 p2 (x) + 4abq (x)

)2k+1
.

According to the identity (1.2),

Fm (x) =
a1−ζ(m)

(ab)⌊
m
2 ⌋
·
σm (x) − τm (x)
σ (x) − τ (x)

=
2a1−ζ(m)

2m (ab)⌊
m
2 ⌋
·

⌊m−1
2 ⌋∑

k=0

(
m

2k + 1

) [
abp (x)

]m−2k−1
(
a2b2 p2 (x) + 4abq (x)

)k
.

Similarly, we show that

σm (x) + τm (x) = 2−m+1
⌊m

2 ⌋∑
k=0

(
m
2k

)
pm−2k (x) am−2kbm−2k

( √
p2 (x) a2b2 + 4q (x) ab

)2k
.

According to the identity (3.12),

Lm (x) =
2aζ(m)

2m (ab)⌊
m+1

2 ⌋
·

⌊m
2 ⌋∑

k=0

(
m
2k

)
(p (x) ab)m−2k

(
p2 (x) a2b2 + 4q (x) ab

)k
.

□

AIMS Mathematics Volume 9, Issue 3, 7492–7510.



7507

Theorem 3.9. Let {Fn (x)} be the generalized bi-periodic Fibonacci and {Ln (x)} be the Lucas
polynomials. We have the following identities

F2m (x) F2n (x) =
(a
b

)ζ(m+n) (
F2

m+n (x) − q2n (x) F2
m−n (x)

)
, (3.23)

F2m (x) F2n (x) =
(a
b

)ζ(m+n)
F2

m+n (x) −
a2q2n (x)

(σ (x) − τ (x))2 ·

(
b
a

)ζ(m+n)

L2
m−n (x) +

4a2 (−q (x))m+n

(σ (x) − τ (x))2 , (3.24)

F2m (x) F2n (x) = −q2n (x)
(a
b

)ζ(m+n)
F2

m−n (x) +
a2

(σ (x) − τ (x))2 ·

(
b
a

)ζ(m+n)

L2
m+n (x) −

4a2 (−q (x))m+n

(σ (x) − τ (x))2 , (3.25)

L2m (x) L2n (x) =
(
b
a

)ζ(m+n) (
L2

m+n (x) − q2n (x) L2
m−n (x)

)
− 4 (−q (x))m+n , (3.26)

L2m (x) L2n (x) =
(σ (x) − τ (x))2

a2

(a
b

)ζ(m+n)
F2

m+n (x) − q2n

(
b
a

)ζ(m+n)

L2
m−n (x) , (3.27)

L2m (x) L2n (x) =
(σ (x) − τ (x))2 q2n (x)

a2 ·

(a
b

)ζ(m+n)
F2

m−n (x) +
(
b
a

)ζ(m+n)

L2
m+n (x) . (3.28)

Proof. We prove only (3.23), and other identities are proved similarly. According to the identity (1.2),
we have(a

b

)ζ(m+n) (
F2

m+n (x) − q2n (x) F2
m−n (x)

)
=

(a
b

)ζ(m+n)

 a1−ζ(m+n)

(ab)⌊
m+n

2 ⌋

 σm+n (x) − τm+n (x)
σ (x) − τ (x)

2

−q2n (x)
 a1−ζ(m+n)

(ab)⌊
m−n

2 ⌋

 σm−n (x) − τm−n (x)
σ (x) − τ (x)


=

a2

(ab)m+n

(
σ2(m+n) (x) + τ2(m+n) (x)

(σ (x) − τ (x))2

)
−

2a2 (−q (x))m+n

(σ (x) − τ (x))2

−
a2

(ab)m+n

(
σ2m (x) τ2n (x) + σ2n (x) τ2m (x)

(σ (x) − τ (x))2

)
+

2a2 (−q (x))m+n

(σ (x) − τ (x))2

=
a2

(ab)m+n ·
σ2m (x) − τ2m (x)
σ (x) − τ (x)

·
σ2n (x) − τ2n (x)
σ (x) − τ (x)

= F2m (x) F2n (x) .

□

Theorem 3.10. Let Fm (x) and Lm (x) denote the m × m tridiagonal matrix defined by

Fm (x) =



ap (x) q (x)
−1 bp (x) q (x)

−1 ap (x) . . .
. . .

. . . q (x)
−1 aζ(m)b1−ζ(m) p (x)


, m ≥ 1 (3.29)
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and

Lm (x) =



ap (x) q (x)
−2 bp (x) q (x)

−1 ap (x) . . .
. . .

. . . q (x)
−1 aζ(m)b1−ζ(m) p (x)


, m ≥ 1, (3.30)

with
F0 (x) =

[
0
]

and
L0 (x) =

[
2
]
.

Therefore,
detFm (x) = Fm+1 (x)

and
detLm (x) = Lm (x) .

Proof. We prove (3.29) and (3.30) by mathematical induction. Obviously, the identity is true when
m = 1 and m = 2:

detF1 (x) = ap (x) = F2 (x) , detF2 (x) = abp2 (x) + q (x) = F3 (x)

and
detL1 (x) = ap (x) = L1 (x) , detL2 (x) = abp2 (x) + 2q (x) = L2 (x) .

We assume that the identity is true when m − 1:

detFm−1 (x) = Fm (x) , detFm−2 (x) = Fm−1 (x)

and
detLm−1 (x) = Lm−1 (x) , detLm−2 (x) = Lm−2 (x) .

Next, we prove that the identity is true with m.
According to the identities (2.3) and (3.1) and mathematical induction, we have

detFm (x) = aζ(m)b1−ζ(m) p (x) detFm−1 (x) + q (x) detFm−2 (x)

= aζ(m)b1−ζ(n) p (x) Fm (x) + q (x) Fm−1 (x)

= Fm+1 (x)

and

detLm (x) = aζ(m)b1−ζ(m) p (x) detLm−1 (x) + q (x) detLm−2 (x)

= aζ(m)b1−ζ(m) p (x) Lm−1 (x) + q (x) Lm−2 (x)

= Lm (x) .

This completes the proof of Theorem 3.10. □
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4. Conclusions

In this paper, we extend the generalized bi-periodic Fibonacci polynomial Fn (x) defined in [18] and
we consider Fn (x) using of matrix methods. In addition, we define the generalized bi-periodic Lucas
polynomial Ln (x) and obtain some identities related to Ln (x). Finally, we obtain a series of identities
connecting Fn (x) and Ln (x). An interesting idea is that perhaps we can obtain a series of identities
related to generalized bi-periodic Lucas polynomials using matrix methods.

Use of AI tools declaration

The authors declare they have not use Artificial Intelligence (AI) tools in the creation of this paper.

Acknowledgments

The authors would like to thank the editors and reviewers for their helpful suggestions. All the
authors have contributed equally to this work and have read and approved this final manuscript. This
work is supported by the National Natural Science Foundation of China (11701448).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of
Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics,
10 (2022), 2342. https://doi.org/10.3390/math10132342

2. W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci
and generalized Lucas numbers, Indian J. Pure Appl. Math., 49 (2018), 527–537.
https://doi.org/10.1007/s13226-018-0282-7

3. W. M. Abd-Elhameed, A. Napoli, Some novel formulas of Lucas polynomials via different
approaches, Symmetry, 15 (2023), 185. https://doi.org/10.3390/sym15010185

4. W. M. Abd-Elhameed, A. Napoli, New formulas of convolved Pell polynomials, AIMS Math., 9
(2024), 565–593. https://doi.org/10.3934/math.2024030

5. W. M. Abd-Elhameed, Y. H. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection
formulae between Fibonacci and Chebyshev polynomials, Ramanujan J., 42 (2017), 347–361.
https://doi.org/10.1007/s11139-015-9712-x

6. Y. Yi, W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart, 40 (2002),
314–318.

7. V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart, 11 (1973), 271–274.

8. Z. Wu, W. Zhang, The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials,
J. Inequal. Appl., 2012 (2012), 134. https://doi.org/10.1186/1029-242X-2012-134

AIMS Mathematics Volume 9, Issue 3, 7492–7510.

http://dx.doi.org/https://doi.org/10.3390/math10132342
http://dx.doi.org/https://doi.org/10.1007/s13226-018-0282-7
http://dx.doi.org/https://doi.org/10.3390/sym15010185
http://dx.doi.org/https://doi.org/10.3934/math.2024030
http://dx.doi.org/https://doi.org/10.1007/s11139-015-9712-x
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2012-134


7510

9. U. K. Dutta, P. K. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS
Math., 4 (2019), 1569–1581. https://doi.org/10.3934/math.2019.6.1569

10. T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., 2001.
https://doi.org/10.1002/9781118033067
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