Research article Special Issues

Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator

  • Received: 28 December 2024 Revised: 05 February 2024 Accepted: 08 February 2024 Published: 21 February 2024
  • MSC : 34Axx, 34Dxx, 34Fxx

  • In this paper, to investigate the dynamic interplay between supply and demand, with a focus on collectability, a novel mathematical model was introduced via conformable operator. This model considers the possibility that operating expenses or a lack of raw materials causes a manufacturing delay than the supply of goods instantly matching demand. This maturation (delay) is represented by the delay factor $ \left(\tau \right) $. Stability analysis revolves around the equilibrium point other than zero. Chaotic behavior emerges through Hopf bifurcation at the critical delay parameter value. If this delay parameter is even slightly perturbed, oscillatory limit cycles can be induced in the market dynamics, leading to equilibrium with brisk market expansion, frequent recessions, and sudden collapses. We conducted sensitivity and directional analysis on a number of factors while also examining the stability and duration of the Hopf bifurcation. Numerical findings were validated using MATLAB. Additionally, the Caputo operator was used to examine the fractional of demand and supply dynamics. Importantly, we assumed a pivotal role in advancing fair labor practices and fostering economic growth on a national scale.

    Citation: Qiliang Chen, Dipesh, Pankaj Kumar, Haci Mehmet Baskonus. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator[J]. AIMS Mathematics, 2024, 9(3): 7471-7191. doi: 10.3934/math.2024362

    Related Papers:

  • In this paper, to investigate the dynamic interplay between supply and demand, with a focus on collectability, a novel mathematical model was introduced via conformable operator. This model considers the possibility that operating expenses or a lack of raw materials causes a manufacturing delay than the supply of goods instantly matching demand. This maturation (delay) is represented by the delay factor $ \left(\tau \right) $. Stability analysis revolves around the equilibrium point other than zero. Chaotic behavior emerges through Hopf bifurcation at the critical delay parameter value. If this delay parameter is even slightly perturbed, oscillatory limit cycles can be induced in the market dynamics, leading to equilibrium with brisk market expansion, frequent recessions, and sudden collapses. We conducted sensitivity and directional analysis on a number of factors while also examining the stability and duration of the Hopf bifurcation. Numerical findings were validated using MATLAB. Additionally, the Caputo operator was used to examine the fractional of demand and supply dynamics. Importantly, we assumed a pivotal role in advancing fair labor practices and fostering economic growth on a national scale.



    加载中


    [1] V. Dorofeenko, G. S. Lee, K. D. Salyer, Risk shocks and housing supply: A quantitative analysis, J. Econ. Dyn. Control, 45 (2014), 194−219. https://doi.org/10.1016/j.jedc.2014.05.014 doi: 10.1016/j.jedc.2014.05.014
    [2] N. Aleksandrov, R. Espinoza, L. Gyurkó, Optimal oil production and the world supply of oil, J. Econ. Dyn. Control, 37 (2013), 1248−1263. https://doi.org/10.1016/j.jedc.2013.01.015 doi: 10.1016/j.jedc.2013.01.015
    [3] M. Plante, How should monetary policy respond to changes in the relative price of oil? Considering supply and demand shocks, J. Econ. Dyn. Control, 44 (2014), 1−19. https://doi.org/10.1016/j.jedc.2014.04.002 doi: 10.1016/j.jedc.2014.04.002
    [4] E. J. Heo, Probabilistic assignment problem with multi-unit demands: A generalization of the serial rule and its characterization, J. Math. Econ., 54 (2014), 40−47. https://doi.org/10.1016/j.jmateco.2014.08.003 doi: 10.1016/j.jmateco.2014.08.003
    [5] G. Weinrich, New Keynesian monopolistic competition and objective demand, J. Math. Econ., 43 (2007), 153−173. https://doi.org/10.1016/j.jmateco.2006.08.003 doi: 10.1016/j.jmateco.2006.08.003
    [6] D. Karlon, J. Morduch, M. Startz, Macroeconomics, McGraw-Hill, 2014.
    [7] G. Stone, Core microeconomic, 2 Eds., Worth Publishers, 2012.
    [8] A. A. Shananin, M. V. Tarasenko, N. V. Trusov, Mathematical modeling of household economy in Russia, Comput. Math. Math. Phys., 61 (2021), 1030−1051. https://doi.org/10.1134/S0965542521060130 doi: 10.1134/S0965542521060130
    [9] I. F. Gimaltdinov, Study of demand for consumer credit and money in cash, Mat. Model., 24 (2012), 84−98.
    [10] H. Mazloumfard, V. Glantz, The influence of tax burden on the profit of banks in conditions of monopolistic competition: Economic-mathematical modeling, Financ. Mark. Institut. Risk., 2017. https://doi.org/10.21272/fmir.1(4).28-36.2017 doi: 10.21272/fmir.1(4).28-36.2017
    [11] C. Tadmon, E. R. N. Tchaptchet, Financial crisis spread, economic growth and unemployment: A mathematical model, Stud. Nonlinear Dyn. E., 27 (2022), 147−170. https://doi.org/10.1515/snde-2021-0081 doi: 10.1515/snde-2021-0081
    [12] N. Arabov, D. Nasimov, H. Khuzhayorov, C. Ananth, T. A. Kumar, Modelling of commercial banks capitals competition dynamics, Int. J. Early Child. Sp., 14 (2022).
    [13] W. Wang, M. A. Khan, P. Kumam, P. Thounthong, A comparison study of bank data in fractional calculus, Chaos Soliton. Fract., 126 (2019), 369−384. https://doi.org/10.1016/j.chaos.2019.07.025 doi: 10.1016/j.chaos.2019.07.025
    [14] V. V. Selyutin, M. A. Rudenko, Mathematical model of the banking firm as tool for analysis, management and learning, Інформаційні технології в освіті, 2013,170−177.
    [15] C. A. Comes, Banking system: Three level Lotka-Volterra model, Proc. Econ. Financ., 3 (2012), 251−255. https://doi.org/10.1016/S2212-5671(12)00148-7 doi: 10.1016/S2212-5671(12)00148-7
    [16] A. Marasco, A. Picucci, A. Romano, Market share dynamics using Lotka-Volterra models, Technol. Forecast. Soc., 105 (2016), 49−62. https://doi.org/10.1016/j.techfore.2016.01.017 doi: 10.1016/j.techfore.2016.01.017
    [17] S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Q. Appl. Math., 59 (2001), 159−173. https://doi.org/10.1090/qam/1811101 doi: 10.1090/qam/1811101
    [18] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, CUP Archive, 41 (1981).
    [19] F. A. Rihan, Sensitivity analysis for dynamic systems with time-lags, J. Comput. Appl. Math., 151 (2003), 445−462. https://doi.org/10.1016/S0377-0427(02)00659-3 doi: 10.1016/S0377-0427(02)00659-3
    [20] K. Thomaseth, C. Cobelli, Generalized sensitivity functions in physiological system identification, Ann. Biomed. Eng., 27 (1999), 607−616. https://doi.org/10.1114/1.207 doi: 10.1114/1.207
    [21] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [22] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73−85.
    [23] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint, 2016. https://doi.org/10.2298/TSCI160111018A
    [24] M. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Pheno., 14 (2019), 311. https://doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
    [25] S. Bhatter, K. Jangid, A. Abidemi, K. M. Owolabi, S. D. Purohit, A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks, Decis. Anal. J., 6 (2023), 100156. https://doi.org/10.1016/j.dajour.2022.100156 doi: 10.1016/j.dajour.2022.100156
    [26] S. Bhatter, S. D. Purohit, K. S. Nisar, S. R. Munjam, Some fractional calculus findings associated with the product of incomplete ℵ-function and Srivastava polynomials, Int. J. Math. Comp. Eng., 2 (2024), 97−116. https://doi.org/10.2478/ijmce-2024-0008 doi: 10.2478/ijmce-2024-0008
    [27] Z. Sabir, M. Umar, Levenberg-Marquardt backpropagation neural network procedures for the consumption of hard water-based kidney function, Int. J. Math. Comp. Eng., 1 (2023), 127−138. https://doi.org/10.2478/ijmce-2023-0010 doi: 10.2478/ijmce-2023-0010
    [28] K. N. Kavya, P. Veeresha, H. M. Baskonus, M. Alsulami, Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron, Commun. Nonlinear Sci., 130 (2024), 1−15. https://doi.org/10.1016/j.cnsns.2023.107755 doi: 10.1016/j.cnsns.2023.107755
    [29] R. Singh, J. Mishra, V. K. Gupta, Dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Comp. Eng., 1 (2023), 115−126. https://doi.org/10.2478/ijmce-2023-0009 doi: 10.2478/ijmce-2023-0009
    [30] B. Gasmi, A. Moussa, Y. Mati, L. Alhakim, H. M. Baskonus, Bifurcation and exact traveling wave solutions to a conformable nonlinear Schrödinger equation using a generalized double auxiliary equation method, Opt. Quant. Electron., 56 (2024), 1−18. https://doi.org/10.1007/s11082-023-05578-y doi: 10.1007/s11082-023-05578-y
    [31] S. T. Abdulazeez, M. Modanli, Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method, Int. J. Math. Comp. Eng., 1 (2023), 105−114. https://doi.org/10.2478/ijmce-2023-0008 doi: 10.2478/ijmce-2023-0008
    [32] M. Ü. Bingöl, S. A. Şafak, Ö. Akın, Comparing some plant communities in a region of Türkiye via fuzzy similarity, Int. J. Math. Comp. Eng., 2 (2024), 123−140. https://doi.org/10.2478/ijmce-2024-0020 doi: 10.2478/ijmce-2024-0020
    [33] H. Fakih, M. Faour, W. Saoud, Y. Awad, On the complex version of the Cahn-Hilliard-Oono type equation for long interactions phase separation, Int. J. Math. Comp. Eng., 2 (2024), 93−110. https://doi.org/10.2478/ijmce-2024-0018 doi: 10.2478/ijmce-2024-0018
    [34] J. L. G. Guirao, M. Alsulami, H. M. Baskonus, E. Ilhan, P. Veeresha, Analysis of nonlinear compartmental model using a reliable method, Math. Comput. Simulat., 214 (2023), 133−151. https://doi.org/10.1016/j.matcom.2023.07.001 doi: 10.1016/j.matcom.2023.07.001
    [35] M. Usman, A. Hussain, F. Zaman, N. Abbas, Symmetry analysis and invariant solutions of generalized coupled Zakharov-Kuznetsov equations using optimal system of Lie subalgebra, Int. J. Math. Comp. Eng., 2 (2024), 53−70. https://doi.org/10.2478/ijmce-2024-0015 doi: 10.2478/ijmce-2024-0015
    [36] V. Ciancio, Derivations of the stress-strain relations for viscoelastic media and the heat equation in irreversible thermodynamic with internal variables, Int. J. Math. Comp. Eng., 2 (2024), 1−14. https://doi.org/10.2478/ijmce-2024-0011 doi: 10.2478/ijmce-2024-0011
    [37] W. Gao, H. M. Baskonus, The modulation instability analysis and analytical solutions of the nonlinear Gross-Pitaevskii model with conformable operator and Riemann wave equations via recently developed schemes, Adv. Math. Phys., 2023 (2023), 1−16. https://doi.org/10.1155/2023/4132763 doi: 10.1155/2023/4132763
    [38] Ö. İlhan, G. Şahin, A numerical approach for an epidemic SIR model via Morgan-Voyce series, Int. J. Math. Comp. Eng., 2 (2024), 125−140. https://doi.org/10.2478/ijmce-2024-0010 doi: 10.2478/ijmce-2024-0010
    [39] M. N. Raihen, S. Akter, Prediction modeling using deep learning for the classification of grape-type dried fruits, Int. J. Math. Comp. Eng., 2 (2024), 1−12. https://doi.org/10.2478/ijmce-2024-0001 doi: 10.2478/ijmce-2024-0001
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1070) PDF downloads(85) Cited by(4)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog