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Abstract: In this paper, to investigate the dynamic interplay between supply and demand, with a focus 

on collectability, a novel mathematical model was introduced via conformable operator. This model 

considers the possibility that operating expenses or a lack of raw materials causes a manufacturing 

delay than the supply of goods instantly matching demand. This maturation (delay) is represented by 

the delay factor (𝜏). Stability analysis revolves around the equilibrium point other than zero. Chaotic 

behavior emerges through Hopf bifurcation at the critical delay parameter value. If this delay parameter 

is even slightly perturbed, oscillatory limit cycles can be induced in the market dynamics, leading to 

equilibrium with brisk market expansion, frequent recessions, and sudden collapses. We conducted 

sensitivity and directional analysis on a number of factors while also examining the stability and 

duration of the Hopf bifurcation. Numerical findings were validated using MATLAB. Additionally, the 

Caputo operator was used to examine the fractional of demand and supply dynamics. Importantly, we 

assumed a pivotal role in advancing fair labor practices and fostering economic growth on a national scale. 
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1. Introduction  

Analysing and predicting demand-supply dynamics is critical for businesses and governments 

alike in today’s challenging financial scene. The capacity to precisely predict and analyze these 

dynamics enables decision-makers to optimize production, distribution, and resource allocation, 

resulting in increased operational efficiency and customer satisfaction. Traditional models, on the other 

hand, frequently miss a vital factor—collectability—which plays a significant role in determining the 

effectiveness of demand fulfillment. The concept of the market depends on the demand-supply 

dynamics. The common commodities like houses observed by Dorofeenko et al. [1], and gasoline by 

Aleksandrov et al. [2] and Plante [3] exhibit the true dynamics of demand and supply. Gasoline prices 

drop due to a huge surplus supply [3]. People are affected by the prices of houses and gasoline; thus, 

it is a must to develop better mathematical models related to the dynamics of demand and supply. 

Many mathematical tools have been developed in the past to study this concept of demand and supply 

examined by Heo [4], and Weinrich [5]. In this analysis, the principles of a dynamical system are 

utilized to examine the intricate dynamics of demand and supply. This approach expands upon the 

traditional Marshall model, offering a more comprehensive understanding. We focus on a specific item 

within the global market to investigate the interplay between demand and supply forces. The concept 

of aggregate demand and aggregate supply is not considered by Karlan et al. [6]. In competitive market 

product, characteristics are standardized, and buyers and sellers cannot affect the price. Firms can enter 

or leave the market without any barriers examined by Stone [7]. According to the law of demand, the 

quantity demanded decreases as the price increases, keeping all the other factors unchanged. According 

to the law of supply, supply quantity rises as prices rise while all other parameters remain constant. 

According to Alfred Marshall, the equilibrium price is determined by the intersection of the supply and 

demand curves (Figure 1). Market is assumed to operate at this price. However, in reality, the factors 

that are kept constant in the definitions of demand and supply curves are called determinants [7]. The 

fundamental changes that take place in these factors have a considerable impact on the dynamics of 

demand and supply, having enormous impacts. It leads to the deviation of the price from the 

equilibrium point. As per the law of demand and supply, the demand curve and the supply curve are 

static and are independent of time. It is assumed that the amount of demand and the amount of supply 

remains stagnant over a period of time. In the proposed demand-supply model, the amounts are 

dependent on time that is the represent the numbers at that specific moment, not over time; these 

models are more realistic.  

According to the law of supply, supply quantity rises as prices rise while all other parameters 

remain constant. According to Alfred Marshall, the equilibrium price is determined by the intersection 

of the supply and demand curves (Figure 1). Market is assumed to operate at this price. However, in 

reality, the factors that are kept constant in the definitions of demand and supply curves are called 

determinants [7]. The fundamental changes that take place in these factors have a considerable impact 

on the dynamics of demand and supply. This leads to the deviation of the price from the equilibrium 

point. As per the law of demand and supply, the demand curve and the supply curve are static and 

independent of time. It is assumed that the amount of demand and the amount of supply remains 

stagnant over a period of time. In the proposed demand-supply model, the amounts are dependent on 

time, which represent the numbers at that specific moment, not over time; these models are more realistic. 
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Figure 1. Market equilibrium occurs when the demand curve and supply curve intersect, 

indicating a state of balance in the market. 

Shananin et al. analyze the impact of consumer financing on home economics in Russia during 

the COVID-19 epidemic [8]. Ramsey-type models were examined by Gimaltdinov as optimum control 

issues [9]. Mazloumfard and Glantz studied bank profits under conditions of monopolistic competition 

and the impact of tax pressure [10]. Tadmon and Njike worked on Okun’s law and method for 

calculating the minimal reservation wage in terms of model parameters [11]. Arabob et al. studied the 

order of derivatives being reduced from units, causing a delay in the fluctuation of financial assets [12]. 

Wang et al. explore the dynamics of bank data using a competitive model with encouraging results [13]. 

Selyutin and Rudenko observed that Savings and capital are two categories of banking services, 

together with loans and deposits. Holdings and retainage are both types of investments [14]. Comes 

studied a three-level Lotka-Volterra (TLVR) model, a two-way financial exchange from the Parent 

Bank to the Subsidiaries Bank, and the reverse is taken into account [15]. Marasco et al. examined the 

Fokker Planck Kolmogorov stochastic equation solution utilized in the TLVR model to evaluate the 

equilibrium of the banking sector. It is possible to build custom Lotka-Volterra models for n-level 

banking [16]. Ruan examined and carefully analyzed the exponential characteristic equation's zeros [17]. 

By utilizing delay differential equations, demand-supply dynamics with collectability factors are 

achieved. However, in this case, the process and its signs are unquestionably different. With the help 

of technological developments, many real world problems have been symbolized using mathematical 

models [32−39]. 

We start by providing some background knowledge on mathematical models. The development 

and redesigned mathematical model are used to undertake a comprehensive numerical examination of 

the dynamics of bank capital. Additionally, a delay differential equation is used to generalize the model. 

The impact of the DDE order on the dynamics of banking capital is proven based on the numerical 

analysis. We conclude by summarizing the findings. 

2. Mathematical model 

The average price of a product over the global market at time t is denoted as 𝑃(𝑡). The complete 

amount of demand of the product in the global market is denoted as 𝐷(𝑡). The complete amount of 

supply of products in a global market is denoted as 𝑆(𝑡). However, the supply of the product is always 

not immediate, but gets delayed due to the availability of raw material, transportation, complications 

of production process, etc. This maturation time or production time is incorporated as delay parameters 
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in the term defining amount of supply 𝑆(𝑡). The threshold prices of demand and supply are denoted 

as 𝑃𝑑 > 0 and 𝑃𝑠 > 0, respectively. A product is assumed to be collectable when its price becomes 

very high, such as when an investor is increasingly more likely to buy a stock when it exceeds its 

fundamental worth. This is denoted by collectability factor 𝐹𝑑 > 0  and does not depend on the 

variables (𝑃, 𝐷, 𝑆). The cost of other commodities, resources, taxes etc. related to supply is denoted 

as 𝐹𝑑 > 0 . Both 𝐹𝑑   and 𝐹𝑠  are independent of the three variables (𝑃, 𝐷, 𝑆) . This entire demand-

supply dynamic is mathematically represented by the following system of first order non-linear delay 

differential equations:  

𝐷𝑃 = 𝛼[𝑅 − 𝑆(𝑡 − 𝜏)]         (1) 

𝐷𝐷 = 𝛽(𝑃𝑑 − 𝑃)[1 − 𝛽1(𝑃𝑑 − 𝑃)
2] + 𝐹𝑑      (2) 

𝐷𝑆 = −𝛾(𝑃𝑠 − 𝑃) + 𝛿[𝑅 − 𝑆(𝑡 − 𝜏)] + 𝐹𝑠      (3) 

where 𝛼, 𝛽, 𝛽1, 𝛾, 𝛿 are all positive parameters. 

2.1. Boundedness of the system 

From Eqs (1)−(3). 

Let W=P+D+S 

𝑑𝑊(𝑡)

𝑑𝑡
=

𝑑𝑃(𝑡)

𝑑𝑡
+
𝑑𝐷(𝑡)

𝑑𝑡
+
𝑑𝑆(𝑡)

𝑑𝑡
. 

Additoinally, 𝜑 = min (𝛼, 𝛽, 𝛾, 𝛿, 𝛽1, 𝑃𝑑 , 𝑃𝑆) 

𝑑𝑊(𝑡)

𝑑𝑡
≤ 𝜑(𝑃 + 𝐷 + 𝑆) + 𝐹𝑑 + 𝐹𝑆 

0 ≤ 𝜑(𝑃 + 𝐷 + 𝑆) + 𝐹𝑑 + 𝐹𝑆 → 0, 0 ≤ (𝑃 + 𝐷 + 𝑆) ≤
𝐹𝑑+𝐹𝑆

𝜑
. 

As t→ ∞, and applying comparison theorem  

0 ≤ (𝑃 + 𝐷 + 𝑆) ≤
𝐹𝑑+𝐹𝑆

𝜑
. 

Hence, a three-dimensional space contains all of the equations in the systems (1)−(3). 

X= [(𝑃, 𝐷, 𝑆) 휀 𝑅+
3 : 0 ≤ (𝑃 + 𝐷 + 𝑆) ≤

𝐹𝑑+𝐹𝑆

𝜑
] as t→ ∞, for all positive initial value {P(0) > 0, D(0) > 

0, S(0), 𝑆(𝑡 − 𝜏)~𝑆= Const. ∀ 𝑡 휀[−𝜏, 0]} 휀 𝐷 ⊂ 𝑅+
3 , where  

𝜑 = min (𝛼, 𝛽, 𝛾, 𝛿, 𝛽1, 𝑃𝑑 , 𝑃𝑆). 

2.2. Positively of dynamics 

Hence, a three-dimensional space contains all of the equations in the systems (1)−(3). 𝑋 =

[(𝑃, 𝐷, 𝑆)휀 𝑅+
3 : 0 ≤ (𝑃 + 𝐷 + 𝑆) ≤

𝐹𝑑+𝐹𝑆

𝜑
] 𝑎𝑠 𝑡 → ∞ , for all positive initial value 𝐷(0) >

0, 𝑆(0), 𝑆(𝑡 − 𝜏)~𝑆= Const. ∀ 𝑡 휀[−𝜏, 0]} 휀 𝐷 ⊂ 𝑅+
3 , Where  

𝜑 = min (𝛼, 𝛽, 𝛾, 𝛿, 𝛽1, 𝑃𝑑 , 𝑃𝑆). 

From (3)  
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𝑑𝑆

𝑑𝑡
≥ −𝛿𝑆 

𝑑𝑆

𝑆
≥ −𝛿𝑑𝑡 

𝑆 ≥ −𝑒𝛿𝑡. 
And similarly, we can calculate for 𝑃 and 𝐷. 

2.3. Equilibrium point 

From Eq (1)  
𝑑𝑃∗

𝑑𝑡
= 0 ⇒ 𝛼[𝐷∗ − 𝑆∗] 

𝛼[𝐷∗ − 𝑆∗] = 0 

𝐷∗ − 𝑆∗ = 0 

𝐷∗ = 𝑆∗. 
From Eq (3) 

𝑃∗ = 𝑃𝑆 −
𝐹𝑆

𝑟
. 

2.4. Cycle of period 

The dynamic behavior for equilibrium points 𝐸∗(𝑃∗, 𝐷∗, 𝑆∗) of the model given by (1)−(3) is 

analyses: 

𝑑𝑃∗

𝑑𝑡
= 𝛼[𝐷∗ − 𝑆∗(𝑡 − 𝜏)]         (4) 

𝑑𝐷∗

𝑑𝑡
= 𝛽(𝑃𝑑 − 𝑃

∗)[1 − 𝛽1(𝑃𝑑 − 𝑃
∗)2] + 𝐹𝑑       (5) 

𝑑𝑆∗

𝑑𝑡
= −𝛾(𝑃𝑠 − 𝑃

∗) + 𝛿[𝐷 − 𝑆∗(𝑡 − 𝜏)] + 𝐹𝑠.      (6) 

The exponential characteristic equation about equilibrium E* is given by: 

𝜆3 + (𝛼𝛽𝛽1(𝑃𝑑
2 + 𝑃2 − 2𝑃𝑑𝑃) + 2𝛼𝛽𝛽1(𝑃𝑑 − 𝑃) − 𝛼𝛽)𝜆 + 𝑒

−𝜆𝜏(𝛿𝜆2 − 𝛼𝛾𝜆 + (𝛼𝛽𝛿
− 𝛿𝛼𝛽𝛽1(𝑃𝑑

2 + 𝑃2 − 2𝑃𝑑𝑃) − 𝛼𝛽𝛿 + 𝛼𝛿𝛽𝛽1(𝑃𝑑
2 + 𝑃2 − 2𝑃𝑑𝑃) = 0 

𝜆3 + 𝑎1𝜆 + 𝑒
−𝜆𝜏(𝑏1𝜆

2 − 𝑏2𝜆 + 𝑏3) = 0.       (7) 

Where 𝑎1 = 𝛼𝛽𝛽1(𝑃𝑑
2 + 𝑃2 − 2𝑃𝑑𝑃) + 2𝛼𝛽𝛽1(𝑃𝑑 − 𝑃) − 𝛼𝛽 

𝑏1 = 𝛿, 𝑏2 = 𝛼𝛾, 𝑏3 = (𝛼𝛽𝛿 − 𝛿𝛼𝛽𝛽1(𝑃𝑑
2 + 𝑃2 − 2𝑃𝑑𝑃) − 𝛼𝛽𝛿 + 𝛼𝛿𝛽𝛽1(𝑃𝑑

2 + 𝑃2 − 2𝑃𝑑𝑃). 

All parameters are 𝑎1, 𝑏1, 𝑏2, 𝑏3 positive. 

Equation (7) have a solution Iff λ = iω  

(iω)3 + 𝑎1(iω) + 𝑒
−iω𝜏(𝑏1(iω)

2 − 𝑏2(iω) + 𝑏3) = 0.    (8) 

Separating real and imaginary part 

−𝜔3 = 𝑏2𝜔 sin 𝜏𝜔 − (𝑏1𝜔
2 + 𝑏3) cos 𝜏𝜔       (9) 

𝑎1𝜔 = 𝑏2 cos 𝜏𝜔 + (𝑏1𝜔
2 + 𝑏3) sin 𝜏𝜔.       (10) 

Squaring and adding (9) and (10), we get 
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𝜔6 − 𝑏1
2𝜔4 + (𝑎1

2 − 𝑏2 − 2𝑏1𝑏3)𝜔
2 + 𝑏3

2 = 0.     (11) 

Put 𝑏1
2 = 𝑎, (𝑎1

2 − 𝑏2 − 2𝑏1𝑏3) = 𝑏, 𝑏3
2 = 𝑐 and 𝜔2 = 𝑧, we get 

𝑧3 − 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0.        (12) 

Equation (12) has at least one real positive root if 𝑐 < 0. 
Suppose 𝑘(𝑧) = 𝑧3 − 𝑎𝑧2 + 𝑏𝑧 + 𝑐 

𝑘(0) = 𝑐 < 0, lim
𝑧→∞

𝑘(𝑧) = ∞, ∃ 𝑧0 ∈ (0,∞) 

𝑘(𝑧0) = 0, if  

Equation (12) has positive at least one positive root iff 𝑐 ≥ 0. 

𝐴 = 𝑎2 − 3𝑏 ≥ 0 

𝑘(𝑧) = 𝑧3 − 𝑎𝑧2 + 𝑏𝑧 + 𝑐 

𝑘′(𝑧) = 3𝑧2 − 2𝑎𝑧 + 𝑏 

𝑘′(𝑧) = 0 → 3𝑧2 − 2𝑎𝑧 + 𝑏 = 0       (13) 

𝑧1,2 =
2𝑎∓√4𝑎2−12𝑏

6
=

𝑎∓√𝐴

3
.        (14) 

Equation (13) has doesn’t any real root if 𝐴 < 0, 𝑘(𝑧) is monotone increasing fuxn in z. 

𝑘(𝑧) = 𝑐 ≥ 0, Eq (11) has no positive root. 

Clearly if 𝐴 ≥ 0, then 𝑧1 =
𝑎+√𝐴

3
 is least possible of 𝑘(𝑧). 

If 𝑐 ≥ 0 then Eq (12) is absolute if 𝑧1 > 0 and 𝑘(𝑧1) > 0. 

Suppose that each of two 𝑧1 ≤ 0 or 𝑧1 > 0 and 𝑘(𝑧1) > 0. 

If 𝑧1 ≤ 0, sin 𝑘(𝑧) is increasing for 𝑧 ≥ 𝑧1 and 𝑘(0) = 𝑐 ≥ 0. 

Consequently, it can be deduced that k(z) does not possess any positive real zeros. If 𝑧1 > 0 and 

𝑘(𝑧1) > 0, sin 𝑧2 =
−𝑎+√𝐴

3
  is superlative value. 

It follows that 𝑘(𝑧1) ≤ 𝑘(𝑧2) 𝑘(0) = 𝑐 ≥ 0, 𝑘(𝑧) has no positive root. 

Lemma 1. 

The variable denoted as z1 is determined by the Eq (14). 

(1) If 𝑐 < 0, there exists at least one positive real root in Eq (12).  

(2) If 𝑐 ≥ 0 and 𝐴 = 𝑎2 − 3𝑏 < 0, If the condition holds, Eq (12) does not possess any positive 

roots. 

(3) If 𝑐 ≥ 0, then Eq (11) has positive root if 𝑧1 > 0 and 𝑘(𝑧1) ≤ 0. 

Let’s assume that Eq (12) possesses a positive root. Without loss of generality (WLOG), we can 

consider three positive roots, namely 𝑧1, 𝑧2, 𝑧3. Consequently, Eq (11) will also have three positive roots: 

𝜔1 = √𝑧1, 𝜔2 = √𝑧2, 𝜔3 = √𝑧3. 

From Eq (10) 

sin𝜔𝜏 =
𝑏1𝜔 − 𝜔

3

𝑑
 

𝜏 =
1

𝜔
[sin−1

 (𝑏1𝜔 − 𝜔
3)

𝑑
+ 2(𝑙 − 1)𝜋] : 𝑙 = 1,2,3 
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𝜏𝑚
(𝑙)
=

1

𝜔𝑚
[sin−1

 (𝑏1𝜔 − 𝜔
3𝑘)

𝑑
+ 2(𝑙 − 1)𝜋] :𝑚 = 1,2,3,      l = 0,1,2…… 

As a result, the roots of Eq (11) would consist of a pair of purely imaginary numbers. When 

𝜏 = 𝜏𝑚
(𝑙),𝑚 = 1,2,3; 𝑙 = 0,1,2… .. 

lim
𝑗→∞

𝜏𝑚
(𝑙) = ∞, m = 1,2,3,4 

𝜏0 = 𝜏𝑚0

(𝑙0) = min
1≤𝑚≤3,𝑙≥1

[𝜏𝑚
(𝑙)
], 𝜔0 = 𝜔𝑚0

, 𝑦0 = 𝑦𝑚0
.     (15) 

Lemma 2. Suppose that  𝑎1 ≥ 0, (𝑐1 + 𝑑),  𝑏1( 𝑐1 − 𝑑) > 0. 

(1) If 𝑐 ≥ 0 and 𝐴 = 𝑎2 − 3𝑏 < 0, then all the roots of Eq (7) will have a negative real part for 

all 𝜏 ≥ 0. 

(2) If 𝑐 < 0 𝑜𝑟 𝑐 ≥ 0, 𝑧1 > 0 and 𝑘(𝑧1) ≤ 0, then all the roots of Eq (7) will have a negative 

real part for all values of τ in the interval 𝜏 𝜖(0, 𝜏0). 
Proof. When τ is equal to zero, Eq (7) transforms into 

𝜆3 + (𝑎1 + 𝑎2)𝜆
2 + (𝑏1 + 𝑏2)𝜆 + (𝑐1 + 𝑐2) = 0.    (16) 

According to Routh-Hurwitz’s Criteria: 

The condition for all roots of Eq (8) to have a negative real part is if and only if 

(𝑐1 + 𝑐2) ≥ 0, (𝑎1 + 𝑎2)(𝑏1 + 𝑏2) − (𝑐1 + 𝑐2) > 0. 

If 𝑐 ≥ 0 and 𝐴 = 𝑎2 − 3𝑏 < 0. 

Lemma 1 (2) show that Eq (7) has no roots with zero real part ∀ 𝜏 ≥ 0. 

When 𝑐 < 0 𝑜𝑟 𝑐 ≥ 0, 𝑧1 > 0 and 𝑘(𝑧1) ≤ 0. 

Lemma 1 (1) and (2) implies when 𝜏 ≠ 𝜏𝑚
(𝑙)
,𝑚 = 1,2,3, 𝑙 ≥ 1, Eq (7) does not possess any roots 

with a zero real part, and the minimum value of τ for which Eq (7) exhibits purely imaginary roots. 

3. Numerical example 

We can obtain insight into the system’s behavior by analyzing the numerical results. We can see 

how changes in parameters or beginning circumstances alter the dynamics of demand and supply. 

Furthermore, we may investigate the implications of the collectability factor on the supply process and 

its impact on overall system behavior: 

𝛼 = 4, 𝛽 = 0.1, 𝑃𝑑 = 10, 𝛽1 = 0.01, 𝐹𝐷 = 1, 𝛾 = 0.01, 𝑃𝑆 = 10, 𝛿 = 2, 𝐹𝑆 = 1. 

4. Result and discussion 

Figure 2 reflects that the supply is delayed below a critical value of 𝜏 < 3.6999. The demand-

supply surplus initial shows fluctuations for these perturbations but becomes stable in the long run. 

Figure 3 shows the period three market attractor. Figure 4 has same observation of the period three 

market, which is supported by the phase diagram. Figure 5 shows that whenever 𝜏 ≥ 3.6999, the 

hopf-bifurcation is observed, which means the entire dynamic will be involved into near ending cycles 

of pick growth recession and flash crash. Figure 6 shows that the attractor will never be at a stable 

equilibrium for the perturbation 𝜏 ≥ 3.6999. Figure 7 explained about the stability of (P, D, S) when 

the parametric value of 𝛽1 varies. 



7478 

AIMS Mathematics  Volume 9, Issue 3, 7471–7491. 

 

Figure 2. Asymptotic behavior of a demand-supply dynamic model at τ<3.6999. 

 

Figure 3. Bar phase diagram of a demand-supply dynamic model at 𝜏 < 3.6999. 
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Figure 4. Phase diagram of a demand-supply dynamic model at 𝜏 < 3.6999. 

 

Figure 5. Hopf-bifurcation of a demand-supply dynamic model at 𝜏 ≥ 3.6999. 
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Figure 6. Phase diagram of a demand-supply dynamic model when 𝜏 ≥ 3.6999. 

 

Figure 7. Sensitivity analysis (𝑃, 𝐷, 𝑆) with respect to 𝛽1. 
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𝑑𝑉1
𝑑𝑡

= 𝛼𝑉2 + 𝛼𝐷
∗ − 𝛼𝑉3(𝑡 − 1) − 𝛼𝑆

∗(𝑡 − 1) 

𝑑𝑉2
𝑑𝑡

= 𝛽𝑃𝑑 − 2𝛽𝛽1𝑃𝑑
2 + 6𝛽𝛽1𝑃𝑑(𝑉1 + 𝑃

∗) + 2𝛽𝛽1𝑃𝑑𝑉1 − 4𝛽𝛽1𝑃𝑑𝑉1𝑃
∗ 

−2𝛽𝛽1𝑃
∗2 − 𝛽𝛽1𝑉1𝑃𝑑

2 − 𝛽𝛽1(𝑉1 + 𝑃
∗)3 − 𝛽𝛽1𝑃

∗𝑃𝑑
2 

𝑑𝑉3

𝑑𝑡
= −𝛾𝑃𝑆 + 𝛾𝑉1 + 𝛾𝑃

∗ + 𝛿𝑉2 + 𝛿𝐷
∗ − 𝛿𝑉3(𝑡 − 1) − 𝛿𝑆

∗(𝑡 − 1).   (17) 

In this stage, we can handle the equation 𝐴 = 𝐴((−1,0), 𝑅+
3). Without loss of generality, we 

represent he the critical value 𝜏𝑙  by 𝜏0 . Let 𝜏 = 𝜏0 + 𝜐 , where 𝜐 = 0  corresponds to the hopf-

bifurcation value of the system (13). For simplicity in notation, we rewrite (17) as: 

𝜐′(𝑡) = 𝐸𝜐(𝑣𝑡) + 𝐹(𝜐, 𝜐𝑡).         (18) 

Where 𝜐(𝑡) = (𝑉1(𝑡), 𝑉2(𝑡), 𝑉3(𝑡))
𝑇𝜖𝑅3, 𝜐𝑡(𝜙)𝜖𝐴 , and defined by 𝜐𝑡(𝜙) = 𝜐𝑡(𝑡 +

𝜙)& 𝐸𝜐: 𝐴 → 𝑅, 𝐹: 𝑅 × 𝐷 → 𝑅 is given as: 

𝐸𝜐χ = (𝜏0 + 𝜐) [
0 𝛼 0
𝑏 0 0
𝛾 𝛿 0

] [

𝜒1(0)

𝜒2(0)

𝜒3(0)
] + (𝜏0 + 𝜐) [

0 0 𝛼
0 0 0
0 0 𝛿

] [

𝜒1(−1)

𝜒2(−1)

𝜒3(−1)
]. 

Where 𝑏 = 𝛽𝛽1(6 + 𝑃𝑑(2 − 𝑃𝑑) − 3𝑉1(𝑉1 + 2𝑃
∗) − 𝑃∗(4 + 3𝑃∗). 

And 𝐹(𝜐, 𝜙) = (𝜏0 + 𝜐) [
𝐹1
𝐹2
𝐹3

]. 

Where, 

𝐹1 = 𝛼𝜒1
2(0) − (1 − 𝐷∗)𝜒1(0)𝜒3(0) + 𝑃

∗𝜒2(0)𝜒3(0) + 𝑆
∗𝜒1(0)𝜒2(0) + 𝜒1(0)𝜒2(0)𝜒3(0) 

𝐹2 = −𝜒2
2(0) − (1 − 𝑃∗)𝜒2(0)𝜒3(0) + 𝐷

∗𝜒1(0)𝜒3(0) + 𝑆
∗𝜒1(0)𝜒2(0) + 𝜒1(0)𝜒2(0)𝜒3(0) 

𝐹3 = 𝛾𝜒3
2(0) + 𝛿𝜒1(−1)𝜒3(0) + 𝛿𝜒2(−1)𝜒3(0) 

𝜒(𝜙) = (𝜒1(𝜙), 𝜒2(𝜙), 𝜒3(𝜙))
𝑇
𝜖𝐴(−1,0), 𝑅). 

Using the Riesz Representation theorem, ∃ 휁(𝜙, 𝜐) of the bounded variation for 𝜙𝜖[−1,0), s.t.  

𝐸𝜐χ = ∫ 𝑑휁(𝜙, 0)𝜙(0) 𝑓𝑜𝑟 𝜙𝜖𝐴
0

−1
. 

We can choose  

휁(𝜙, 𝜐) = (𝜏0 + 𝜐) [
0 𝛼 0
𝑏 0 0
𝛾 𝛿 0

] 𝜍(𝜙) + (𝜏0 + 𝜐) [
0 0 𝛼
0 0 0
0 0 𝛿

] 𝜍(𝜙 + 1). 

Here 𝛿 is the direct delta function. For χϵ A([−1,0], 𝑅+
3), and calculate 

ℛ(𝜐)𝜒 =

{
 
 

 
 𝑑𝜒(𝜙)

𝑑𝜙
, 𝜙 ∈ [−1,0)

∫ 𝑑
0

−1

휁(𝜙, 0)𝜒(𝜙), 𝜙 = 0.

 𝑎𝑛𝑑 𝑅(𝜐)𝜒 = {
0, 𝜙 ∈ [−1,0)

𝑚(𝜐, 𝜒) 𝜙 = 0.
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Subsequently, the system (17) holds and equivalence to  

𝜐′(𝑡) = ℛ(𝜐)𝜒 + 𝑅(𝜐)𝜐𝑡, 𝑓𝑜𝑟       (19) 

휂 ∈ 𝐴1([−1,0], 𝑅+
3) 

ℛ∗휂(𝑠) =

{
 
 

 
 −

𝑑휂(𝑠)

𝑑𝑠
, 𝑠 ∈ [−1,0)

∫ 𝑑
0

−1

휁𝑇(−𝑡, 0)휂(−𝑡), 𝑠 = 0.

. 

Furthermore, the bilinear inner product 

< 휂(𝑠), 𝜒(𝜙) > = 휂(0)𝜒(0) − ∫ ∫ 휂(𝜚 − 𝜙)𝑑휁(𝜙)𝜒(𝜚)
𝜃

𝜚=𝜙

0

−1
𝑑𝜚.   (20) 

ℛ∗  and ℛ = ℛ(0)  and the operators ℛ∗  and 𝑖𝜔0  represent the algebraic entities, with 𝑖𝜔0 

being the eigenvalues of ℛ(0). Consequently, these values serve as coefficient of ℛ∗. Consider the 

eigen vector 𝑟(𝜙) = 𝑟(0)𝑒𝑖𝜔0𝜙 associated with eigen value 𝑖𝜔0. It follows that ℛ(0) = 𝑖𝜔0𝑟(𝜙). 
When 𝜙 = 0, we arrive at the expression 

[𝑖𝜔0𝐿 − ∫ 𝑑휁(𝜙)𝑒𝑖𝜔0𝜙
0

−1
] 𝑟(0) = 0, which option 𝑟(0) = (1, 𝜎1, 𝜌1 )

𝑇 

𝜎1 =
(𝑃∗ − 𝑃∗𝐷∗)𝐷∗𝑆∗ + (𝐷∗ − 𝑃∗𝐷∗)(𝑖𝜔0 + 𝛼𝑃

∗)

𝑃∗𝑆∗(𝐷∗ − 𝑃∗𝐷∗) − (𝑃∗ − 𝑃∗𝐷∗)(𝑖𝜔0 + 𝑏𝐷∗)
 

𝜌1 =
𝑃∗𝐷∗𝑆∗2−(𝑖𝜔0+𝛼𝑃

∗)(𝑖𝜔0+𝑏𝐷
∗)

𝑃∗𝑆∗(𝐷∗−𝑃∗𝐷∗)−(𝑃∗−𝑃∗𝐷∗)(𝑖𝜔0+𝑏𝐷∗)
. 

Similarly, it can be calculated that 𝑟∗(𝑠) = 𝑀(1, 𝜎2, 𝜌2)𝑒
𝑖𝜔0𝜏0𝑠  is the eigen value of ℛ∗ 

corresponding to −𝑖𝜔0, where 

𝜎2 =
(𝑃∗ − 𝑃∗𝐷∗)𝐷∗𝑆∗ + (𝐷∗ − 𝑃∗𝐷∗)(𝛼𝑃∗ − 𝑖𝜔0)

𝑃∗𝑆∗(𝐷∗ − 𝑃∗𝐷∗) − (𝑃∗ − 𝑃∗𝐷∗)(𝑏𝐷∗ − 𝑖𝜔0)
 

𝜌2 =
𝑃∗𝐷∗𝑆∗2 − (𝑖𝜔0 + 𝛼𝑃

∗)(𝑏𝐷∗ − 𝑖𝜔0)

𝑃∗𝑆∗(𝐷∗ − 𝑃∗𝐷∗) − (𝑃∗ − 𝑃∗𝐷∗)(𝑏𝐷∗ − 𝑖𝜔0)
. 

In order to assure < 𝑟∗(𝑠), 𝑟(𝜙) > = 1, and we calculate the value of M, from Eq (15), 

< 𝑟∗(𝑠), 𝑟(𝜙) > 

= 𝑀(1, 𝜎2, 𝜌2, )(1, 𝜎1, 𝜌1)
𝑇 −∫ ∫ 𝑀(1, 𝜎2, 𝜌2, )𝑒

−𝑖𝜔0𝜏0(𝜚=𝜙)𝑑휁(𝜙)(1, 𝜎1, 𝜌1)
𝑇𝑒𝑖𝜔0𝜏0

𝜙

𝜚=𝜙

0

−1

𝑑휁 

= 𝑀{1 + 𝜎1𝜎2 + 𝜌1𝜌2 −∫ (1, 𝜎2, 𝜌2, )
0

−1

𝜙𝑒𝑖𝜔0𝜏0𝜙(1, 𝜎1, 𝜌1)
𝑇}𝑀{1 + 𝜎1𝜎2 + 𝜌1𝜌2

+ 𝜏0𝜎2𝑆
∗(ℬ𝜌1 − ℊ𝜎1)𝑒

𝑖𝜔0𝜏0}. 

Hence, we choose 

𝑀 =
1

(1 + 𝜎1𝜎2 + 𝜌1𝜌2 + 𝜏0𝜎2𝑆∗(ℬ𝜌1 − ℊ𝜎1)𝑒𝑖𝜔0𝜏0)
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s.t. < 𝑟∗(𝑠), 𝑟(𝜙) > = 1,< 𝑟∗(𝑠), 𝑟(𝜙)   > = 0. 

We’ve used the approach suggested by Hassard et al. [18] to figure out the specifics of the central 

surface. To achieve this, we used the same notations that were described in their work, 𝐴0 at 𝜐 = 0. 
In particular, we designate the result of Eq (14) as 𝜐𝑡,when 𝜐 = 0. 

ℋ(𝑡) =< 𝑟∗(𝑠), 𝜐𝑡(𝜙) >,𝑊(𝑡, 𝜙) = 𝜐𝑡(𝜙) − 2𝑅𝑒(ℋ(𝑡)𝑟(𝜙)).    (21) 

The center manifold theory 𝐴0 

𝑊(𝑡, 𝜙) = 𝑊 ((𝑟(𝑡), 𝑟(𝑡), 𝜙). 

Where 𝑊(𝑟, 𝑟, 𝜙) = 𝑊20(𝜙)
ℋ2

2
+𝑊11(𝜙)ℋℋ̅ +𝑊02(𝜙)

ℋ̅2

2
+⋯. 

Let 𝑟 𝑎𝑛𝑑 �̅� represent the local coordinates associated with the center manifold 𝐴0, which is 

aligned with the directions of 𝑟∗ and 𝑟 ∗̅, respectively. The parameter W is considered positive when 

the solution 𝜐𝑡 is positive. It is important to concentrate only on real solutions. For the specific of the 

Eq (15), 𝜐𝑡𝜖𝐴0, when 𝜐 = 0, 

ℋ′(𝑡) = 𝑖𝜔0𝜏0ℋ+< �̅�(𝜙), 𝐹(0,𝑊(ℋ, ℋ̅, 𝜙) + 2𝑅𝑒(ℋ(𝑡), 𝑟(𝜙)) > 
= 𝑖𝜔0𝜏0ℋ + 𝑟 ∗̅ (0)𝐹(0,𝑊(ℋ, ℋ̅, 0) + 2𝑅𝑒(ℋ(𝑡)𝑟(𝑡) 

≅ 𝑖𝜔0𝜏0ℋ + �̅�∗(0)𝐹0(ℋ, ℋ̅). 

On rewriting this equation again: 

ℋ′(𝑡) ≅ 𝑖𝜔0𝜏0ℋ(𝑡) + 𝑐(ℋ, ℋ̅).       (22) 

Where 𝑐(ℋ, ℋ̅) = �̅�∗(0)𝐹0(ℋ, ℋ̅) 

𝑐(ℋ, ℋ̅) = 𝑐20(𝜙)
ℋ2

2
+ 𝑐11(𝜙)ℋℋ̅ + 𝑐21(𝜙)

ℋ2ℋ̅

2
+ ⋯ 

Observing as 𝜐𝑡(𝜙) = (𝑉1𝑡, 𝑉2𝑡, 𝑉3𝑡) = 𝑊(𝑡, 𝜙) +ℋ𝑟(𝜙) +ℋ𝑟(𝜙)̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅ 
And 𝑟(0) = 𝑀(1, 𝜎1, 𝜌1)

𝑇𝑒𝑖𝜔0𝜏0𝜙, we have  

𝑉1𝑡(0) = ℋ + ℋ̅ +𝑊20
1 (0)

ℋ2

2
+𝑊11

1 (0)ℋℋ̅ +𝑊02
1 (0)

ℋ̅2

2
+⋯ 

𝑉2𝑡(0) = 𝜎1ℋ + 𝜎1ℋ̅̅ ̅̅ ̅̅ + 𝑊20
2 (0)

ℋ2

2
+𝑊11

2 (0)ℋℋ̅ +𝑊02
2 (0)

ℋ̅2

2
+⋯ 

𝑉3𝑡(0) = 𝜌11ℋ + 𝜌11ℋ̅̅ ̅̅ ̅̅ ̅ +𝑊20
3 (0)

ℋ2

2
+𝑊11

3 (0)ℋℋ̅ +𝑊02
3 (0)

ℋ̅2

2
+⋯ 

𝑉1𝑡(−1) = ℋ𝑒−𝑖𝜔0𝜏0 + ℋ̅𝑒𝑖𝜔0𝜏0 +𝑊20
1 (−1)

ℋ2

2
+𝑊11

1 (−1)ℋℋ̅ +𝑊02
1 (−1)

ℋ̅2

2
+⋯ 

𝑉2𝑡(−1) = 𝜎1ℋ𝑒
−𝑖𝜔0𝜏0 + 𝜎1ℋ̅̅ ̅̅ ̅̅ 𝑒

𝑖𝜔0𝜏0 +𝑊20
2 (−1)

ℋ2

2
+𝑊11

2 (−1)ℋℋ̅ +𝑊02
2 (−1)

ℋ̅2

2
+⋯ 

Consequently, by comparing coefficients with Eq (21), the following can be derived: 

𝑐20 = −2𝜏0�̅�[𝛼 + (1 − 𝐷
∗)𝜌1 − 𝜎1(𝑃

∗𝜌1 + 𝑆
∗) + 𝜎1̅̅̅(𝑏𝜎1

2 + (1 − 𝑃∗)𝜎1𝜌1)𝑧 − 𝜎1𝑆
∗ − 𝜌1𝐷

∗)
+ 𝜎2̅̅ ̅ 𝜎1(𝑑𝜌1 − 𝛿𝑒

−𝑖𝜔0𝜏0 − 𝑓𝜎1𝑒
−𝑖𝜔0𝜏0  
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𝑐11 == −2𝜏0�̅�[+(1 − 𝐷
∗)𝑅𝑒{𝜌1} − 𝑃

∗𝑅𝑒{𝜌1̅̅ ̅𝜎1} + 𝑆
∗𝑅𝑒{𝜌1}

+ 𝜎2̅̅ ̅ (𝜎1𝜌1̅̅ ̅ − +(1 − 𝑃
∗)𝑅𝑒{𝜎1𝜌1̅̅ ̅} − 𝐷

∗𝑅𝑒{𝜌1̅̅ ̅} − 𝑆
∗𝑅𝑒{𝜎1})

+ 𝜌2̅̅ ̅(𝑑𝜌1𝜌1̅̅ ̅ − 𝛿𝑅𝑒{𝜌1𝑒
𝑖𝜔0𝜏0} − 𝑓𝑅𝑒{𝜎1̅̅̅𝜌1𝑒

𝑖𝜔0𝜏0})] 

𝑐02 = −2𝜏0�̅�[𝛼 + (1 − 𝐷
∗)𝜌1̅̅ ̅ − 𝜎1̅̅̅(𝑃

∗𝜌1̅̅ ̅ + 𝑆
∗) + 𝜎1̅̅̅(𝑏𝜎1

2̅̅ ̅ + (1 − 𝑃∗)𝜎1𝜌1̅̅ ̅ − 𝜎1̅̅̅𝑆
∗ − 𝜌1̅̅ ̅𝐷

∗)

+ 𝜌1̅̅ ̅𝜌2̅̅ ̅(𝑑𝜌1̅̅ ̅ − 𝛿𝑒
𝑖𝜔0𝜏0 − 𝑓𝜎1̅̅̅𝑒

−𝑖𝜔0𝜏0)] 

𝑐21 = −2𝜏0�̅�[𝛼(𝑊20
1 (0) + 2𝑊11

1 (0)) + (1 − 𝐷∗) (
1

2
𝑊20

1 (0)𝜌1̅̅ ̅ +𝑊11
1 (0)𝜌1 +

1

2
𝑊20

3 (0) +

𝑊11
3 (0)) − (2𝑅𝑒(𝜎1𝜌1) − 𝑃

∗ (
1

2
𝑊20

2 (0)𝜌1̅̅ ̅ +
1

2
𝑊20

3 (0)𝜌1̅̅ ̅ + 𝑊11
1 (0)𝜌1 +𝑊11

3 (0)𝜌1) −

𝑆∗(
1

2
𝑊20

2 (0) +
1

2
𝑊20

1 (0)𝜎1̅̅̅ +𝑊11
1 (0)𝜎1 + 𝜎2̅̅ ̅ (−(𝑊20

2 (0)𝜎1̅̅̅ + 2𝑊11
2 (0)𝜎1) + (1 −

𝑃∗) (
1

2
𝑊20

2 (0)𝜎1̅̅̅ + 𝑊11
1 (0)𝜌1 +𝑊11

3 (0)𝜎1̅̅̅) − (2𝑅𝑒{𝜌1̅̅ ̅𝜎1} + 𝜌1𝜎1) − 𝐷
∗ (

1

2
𝑊20

1 (0)𝜌1̅̅ ̅ +
1

2
𝑊20

3 (0) +

𝑊11
1 (0)𝜌1 +𝑊11

3 (0)) − 𝑆∗ (
1

2
𝑊20

2 (0) +𝑊20
1 (0)𝜎1̅̅̅ + 𝑊11

2 (0) +𝑊11
1 (0)𝜎1) + 𝜌2̅̅ ̅ (𝛿(𝑊20

3 (0)𝜌1̅̅ ̅ +

2𝑊20
3 (0)𝜌1) − 𝛿(𝑊20

1 (−1)𝜌1̅̅ ̅) +𝑊11
1 (−1)𝜌1 +

1

2
𝑊20

3 (0)𝑒𝑖𝜔0𝜏0 +𝑊11
3 (0)𝑒−𝑖𝜔0𝜏0) −

𝛿 (
1

2
𝑊20

1 (−1)𝜌1̅̅ ̅ + 𝑊11
2 (−1)𝜌1 +

1

2
𝑊20

3 (0)𝜎1̅̅̅𝑒
𝑖𝜔0𝜏0 +𝑊11

3 (0)𝜎1𝑒
−𝑖𝜔0𝜏0))]. 

To determine the value of 𝑐21, it is important to compute 𝑊20(𝜙) & 𝑊11(𝜙) as per Eqs (19) 

and (21) respectively: 

𝑊′ = 𝜐𝑡 −ℋ
′𝑟 −ℋ′̅̅ ̅̅ 𝑟 = {

ℛ𝑊 − 2𝑅𝑒{�̅�∗(0)𝐹0𝑟(𝜙)},            𝜙𝜖[−1,0)

ℛ𝑊 − 2𝑅𝑒{�̅�∗(0)𝐹0𝑟(0)} + 𝐹0,     𝜙 = 0
. 

Let  

𝑊′ = ℛ𝑊 + 𝐾.        (23) 

Where,  

𝐾(ℋ, ℋ̅, 𝜙) = 𝐾20(𝜙)
ℋ2

2
+ 𝐾11(𝜙)ℋℋ̅ + 𝐾02(𝜙)

ℋ̅2

2
+ 𝐾21(𝜙)

ℋ̅2ℋ̅

2
…   (24) 

Alternatively, when considering 𝐴0 in the vicinity of the origin,  

𝑊′ = 𝑊ℋℋ
′ +𝑊ℋℋ̅. 

By expanding the above series and calculating the coefficients, we obtain the following results: 

[ℛ − 2𝑖𝜔0𝐿]𝑊20(𝜙) = −𝐾20(𝜙),ℛ𝑊11(𝜙) = −𝐾11(𝜙).   (25) 

From Eq (18), we know 𝜙𝜖[−1,0), 

𝐾(ℋ, ℋ̅, 𝜙) = −𝑟 ∗̅(0)𝐹0̅̅̅𝑟(𝜙) − 𝑟 ∗̅(0)𝐹0𝑟(𝜙)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝑐𝑟(𝜙) − 𝑐̅𝑟(𝜙)̅̅ ̅̅ ̅̅ . 

Comparing the coefficient with Eq (20), for 𝜙𝜖[−1,0) we get 

𝐾20(𝜙) = −𝑐20𝑟(𝜙) − 𝑐02̅̅ ̅̅  𝑟(𝜙)̅̅ ̅̅ ̅̅  

𝐾11(𝜙) = −𝑐11𝑟(𝜙) − 𝑐11̅̅ ̅̅  𝑟(𝜙)̅̅ ̅̅ ̅̅ . 

From Eqs (23) and (25) and definition of ℛ, we get 



7485 

AIMS Mathematics  Volume 9, Issue 3, 7471–7491. 

𝑊20(𝜙) = 2𝑖𝜔0𝜏0𝑊20(𝜙) + 𝑐20(𝜙) + 𝑐02̅̅ ̅̅  𝑟(𝜙)̅̅ ̅̅ ̅̅ . 

Further examine the 𝑊20(𝜙): 

𝑊20(𝜙) =
𝑖𝑐20

𝜔0𝜏0
𝑟(0)𝑒𝑖𝜔0𝜏0𝜙 +

𝑖𝑐20̅̅ ̅̅ ̅

3𝜔0𝜏0
𝑟(0)𝑒−𝑖𝜔0𝜏0𝜙 + 𝐴1𝑒

2𝑖𝜔0𝜏0𝜙. 

Similarly,  

𝑊11(𝜙) =
𝑖𝑐11

𝜔0𝜏0
𝑟(0)𝑒𝑖𝜔0𝜏0𝜙 +

𝑖𝑐11̅̅ ̅̅ ̅

𝜔0𝜏0
�̅� (0)𝑒−𝑖𝜔0𝜏0𝜙 + 𝐴2. 

Here 𝐴1 & 𝐴2  repreent three-dimensional vectors, and their values can be computed by 

substituting 𝜙 = 0 in K. Indeed, as a matter of fact 

𝐾(ℋ, ℋ̅, 𝜙) = 2𝑅𝑒{�̅�∗(0)𝐹0𝑟(0)} + 𝐹0. 

We get, 

𝐾20(𝜙) = −𝑐20𝑟(𝜙) − 𝑐02̅̅ ̅̅  𝑟(𝜙)̅̅ ̅̅ ̅̅ + 𝐹𝐻2 

𝐾11(𝜙) = −𝑐11𝑟(𝜙) − 𝑐11̅̅ ̅̅  𝑟(𝜙)̅̅ ̅̅ ̅̅ + 𝐹ℋℋ̅. 

Where 𝐹0 = 𝐹𝐻2
ℋ2

2
+ 𝐹ℋℋ̅ℋℋ̅ +⋯ 

With the def. of ℛ, 

∫ 𝑑
0

−1
휁(𝜙)𝑊20(𝜙) = 2𝑖𝜔0𝜏0𝑊20(0) + 𝑐20𝑟(0) + 𝑐02̅̅ ̅̅  𝑟(0)̅̅ ̅̅ ̅̅ − 𝐹𝐻2. 

Furthermore, 

∫ 𝑑
0

−1

휁(𝜙, )𝑊11(𝜙) = 𝑐11𝑟(0) + 𝑐11̅̅ ̅̅  𝑟(0)̅̅ ̅̅ ̅̅ − 𝐹ℋℋ̅ 

[𝑖𝜔0𝜏0𝐿 − ∫ 𝑒𝑖𝜔0𝜏0𝜙𝑑휁(𝜙)
0

−1
] 𝑟(0) = 0 𝑎𝑛𝑑 [−𝑖𝜔0𝜏0𝐿 − ∫ 𝑒−𝑖𝜔0𝜏0𝜙𝑑휁(𝜙)

0

−1
] 𝑟(0)̅̅ ̅̅ ̅̅ = 0. 

This shows 

[2𝑖𝜔0𝜏0𝐿 − ∫ 𝑒2𝑖𝜔0𝜏0𝜙𝑑휁(𝜙)
0

−1
] 𝐴1 = 𝐹𝐻2 𝑎𝑛𝑑 − [∫ 𝑑휁(𝜙)

0

−1
] 𝐴2 = 𝐹ℋℋ̅. 

Hence, 

[

2𝑖𝜔0 + 𝛼𝑃
∗ −𝑃∗𝑆∗ 𝑃∗ − 𝑃∗𝐷∗

−𝐷∗𝑆∗ 2𝑖𝜔0 + 𝑏𝐷
∗ 𝐷∗ − 𝑃∗𝐷∗

𝛿𝑆∗𝑒−2𝑖𝜔0𝜏0 −𝛿𝑆∗𝑒−2𝑖𝜔0𝜏0 (2𝑖𝜔0 + 𝛿𝑆
∗)
] 𝐴1 

= −2 [

𝛼 + (1 − 𝐷∗)𝜌1 − 𝜎1(𝑃
∗𝜌1 + 𝑆

∗)

𝑏𝜎1
∗ + (1 − 𝑃∗)𝜎1𝜌1 − 𝜎1𝑆

∗ − 𝜌2𝐷
∗

𝜌1(𝛿𝜌1 − 𝛿𝑒
−𝑖𝜔0𝜏0 − 𝛿𝜎1𝑒

−𝑖𝜔0𝜏0

] 

[
𝛼𝑃∗ −𝑃∗𝑆∗ 𝑃∗ − 𝑃∗𝐷∗

−𝐷∗𝑆∗ −𝐷∗ 𝐷∗ − 𝑃∗𝐷∗

𝛿𝑆∗ −𝛿𝑆∗ 𝛿𝑆∗
] 𝐴2 

= −2 [

𝛼 + (1 − 𝐷∗)𝑅𝑒{𝜌1} − 𝑃
∗𝑅𝑒{𝜌1̅̅ ̅𝜎1} + 𝑆

∗𝑅𝑒{𝜎1})

−𝜎1̅̅̅𝜎1 + (1 − 𝑃
∗)𝑅𝑒{𝜌1̅̅ ̅𝜎1} − 𝐷

∗𝑅𝑒{𝜌1̅̅ ̅} − 𝑆
∗𝑅𝑒{𝜎1}

𝛿𝜌1𝜌1̅̅ ̅ − 𝛿𝑅𝑒{𝜌1} − 𝛿𝑅𝑒{𝜌1̅̅ ̅𝜎1}𝑒
𝑖𝜔0𝜏0

]. 
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Thus, parameter 𝑐21 is demonstrate. Upon analyzing the information provided above, each 𝑐𝑖𝑗 

can be evaluated using the parameters, leading to the computation of the following values: 

𝐽1(0) =
𝑖

2𝜔0𝜏0
(𝑐11𝑐20 − 2|𝑐11|

2 −
|𝑐02|

2

3
) +

𝑐21

2
,

 𝜅2 = −
𝑅𝑒{𝐽1(0)}

𝑅𝑒(𝜆′(𝜏0)}
,

𝜄2 = 2𝑅𝑒{𝐽1(0)},

𝑇2 = −
Im{𝐽1(0)}+𝜅2𝐼𝑚{𝜆

′(𝜏0)}

𝜔0𝜏0

.     (26) 

Theorem 1. The value of 𝜅2 dictates the direction of the Hopf-bifurcation. The Hopf-bifurcation is 

in a supercritical state when 𝜅2 > 0 and a subcritical state when 𝜅2 < 0. As a result, for 𝜏 > 𝜏0 and 

𝜏 < 𝜏0 , there are bifurcating periodic solutions, respectively. The value of 𝜄2 determines how stable 

the bifurcating solutions are. If 𝜄2 and unstable if 𝜄2 > 0, bifurcating periodic solutions are orbitally 

asymptotically stable. The value of 𝑇2 affects how long the bifurcating periodic solutions last. If 𝑇2 >
0 (𝑇2 < 0), the period grows and vice versa. 

6. Sensitivity analysis 

To determine the coefficient of generalized sensitivity, Rihan [19], and Thomaseth and Cobelli [20] 

employ the “direct method”. This direct approach involves making the assumption of fixed parameters 

and subsequently computing the sensitivity coefficient (𝜶, 𝜷, 𝜷𝟏, 𝜸, 𝜹)  through utilization of the 

sensitivity equation along with the initial solution of Eqs (1)−(3). By focusing on a specific criterion, 

say γ1, the partial derivatives of the solution (𝑷,𝑫, 𝑺) with respect to 𝜷𝟏 yield the criteria for the 

sensitivity Eqs (27)−(29), as presented below: 

𝑑𝑆1

𝑑𝑡
= 𝛼[𝑆2 − 𝑆3(𝑡 − 𝜏)]         (27) 

𝑑𝑆2

𝑑𝑡
= [−𝛽 − 𝛽𝛽1(6𝑃𝑑𝑃 − 𝑃𝑑

2 + 3𝑃2)]𝑆1      (28) 

𝑑𝑆3

𝑑𝑡
= −𝛾𝑆1 + 𝛿𝑆2 − 𝛿𝑆3(𝑡 − 𝜏).      (29) 

Where 𝑆1 =
𝜕𝑃

𝜕𝛽1
, 𝑆2 =

𝜕𝐷

𝜕𝛽1
, 𝑆3 =

𝜕𝑆

𝜕𝛽1
. 

By evaluating Eqs (27)−(29) with respect to parameter 𝛽1, we were also able to investigate the 

effects of the systems (1)−(3) on the variables (𝑃, 𝐷, 𝑆) . We kept all other factors constant while 

performing a sensitivity analysis for the variables (𝑃, 𝐷, 𝑆) pertaining to 𝛽1. It is interesting that the 

system remained stable throughout this time, even though 𝛽1 varied between 0.7 and 0.9. 

Similarly, we can calculate the sensitivity analysis (𝛼, 𝛽, 𝛾, 𝛿).  

7. Model with fractional operators 

The same model is also studied using different fractional derivative operators. In addition, to 

guarantee that the left and right sides of the ensuing fractional model have the same dimension 

(𝑡𝑖𝑚𝑒)−𝜂, all the parameters having the dimension (𝑡𝑖𝑚𝑒)−1 are replaced by powers of 𝑣, while the 

other parameters remain unchanged. There is significance associated with various operators of 

fractional derivatives. Riemann-Liouville proposed the definition with singular kernel [21], which was 

the first and most widely accepted definition in the field of fractional calculus. The definition of the 
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derivative of fractional order with the non-singular kernel was presented by Caputo [21]. Since this 

definition is based on the idea of power law, it is inapplicable to issues when the fading memory process 

is present. Caputo and Fabricio’s formulation [22] represent the next advancement in this field, as it 

addresses processes that display fading memory processes with exponential decay and the Delta-Dirac 

characteristic. Last, the definition of fractional derivatives and integrals that can easily handle the process 

by exhibiting a passage from fading memory to power law have been introduced by Atangana [23,26−31]. 

The proposed fractional mathematical model in the context of Caputo and C-F fractional operators is 

now examined here. 

7.1. Model in Caputo fractional derivative framework 

The demand-supply dynamic is mathematically represented by the following system of first order 

non-linear delay differential equation with conformal operators; where 𝛼, 𝛽, 𝛾, 𝛿, 𝛽1  are all positive 

parameters and 0 < 휀 ≤ 1. Consider the model in Caputo fractional derivative framework as follows: 

𝒷𝜁𝑡
𝜂𝑃 = 𝛼𝜂[𝐷 − 𝑆], 𝑃(0) = 𝑃0        (30) 

𝒷𝜁𝑡
𝜂𝐷 = 𝛽𝜂(𝑃𝑑 − 𝑃)[1 − 𝛽1

𝜂(𝑃𝑑 − 𝑃)
2] + 𝐹𝑑 , 𝐷(0) = 𝐷0    (31) 

𝒷𝜁𝑡
𝜂𝑆 = −𝛾𝜂(𝑃𝑠 − 𝑃) + 𝛿

𝜂[𝐷 − 𝑆] + 𝐹𝑠, 𝑆(0) = 𝑆0.     (32) 

Here, ′𝒷𝜁𝑡
𝜂′  denotes the Caputo derivative of fractional order ′휂′  and for calculating the 

fractional derivatives, it is assumed that 𝑆(𝑡 − 𝜏) ≈ 𝑆(𝑡). 
Definition 1. Let ′𝑓′ be an integrable function on ′𝑅′. If there exists a number 0 < 휂 < 1, then the 

fractional Caputo derivative with order ′휂′ is given by: 

𝒷𝜁𝑡
𝜂𝑓(𝑡) =

1

𝜔(1−𝜂)
∫

1

(𝑡−𝜑)𝜂
𝑑

𝑑𝜑
𝑓(𝜑)𝑑𝜑

𝑡

0
       (33) 

where ′𝒷𝜁𝑡
𝜂′ denotes the Caputo derivative of fractional order 휂. 

Theorem 2. The Cauchy problem with the Caputo derivative allows a unique solution [24] if the 

following two conditions hold for two positive constants ℒ and ℒ̅: 
(I) Lipchitz condition: |𝑔(𝑡, 𝑣1(𝑡)) − 𝑔(𝑡, 𝑣2(𝑡))| ≤ ℒ|𝑣1 − 𝑣2|  for all 𝑣1, 𝑣2 ∈ 𝑅  and for all  

𝑡 ∈ [𝑡0, 𝑇]. 
(II) Linear growth condition: |𝑔(𝑡, 𝑣)|2 ≤ ℒ̅(1 + |𝑣|2). 

7.2. Model in the Caputo fractional derivative framework 

From (30)−(32) to find the numerical solution [26], consider 

휁𝑡
𝜂

0
𝒷 𝜓(𝑡) = 𝑘(𝑡, 𝜓(𝑡)), 𝑡 ≥ 0, 𝜓(0) = 𝜓0.      (34) 

Using the fundamental theorem, we can rewrite the above equation as: 

𝜓(𝑡) = 𝜓(0) +
1

𝜔(𝜂)
∫ (𝑡 − 𝜑)𝜂−1𝑘(𝜓, 𝜑)𝑑𝜑
𝑡

0
.     (35) 

At 𝑡 = 𝑡𝑝+1, we have 

𝜓(𝑡𝑝+1) = 𝜓(0) +
1

𝜔(𝜂)
∫ (𝑡𝑝+1 − 𝜑)

𝜂−1
𝑘(𝜓, 𝜑)𝑑𝜑

𝑡𝑝+1
0

.    (36) 
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At 𝑡 = 𝑡𝑝, we have 

𝜓(𝑡𝑝) = 𝜓(0) +
1

𝜔(𝜂)
∫ (𝑡𝑝 − 𝜑)

𝜂−1
𝑘(𝜓, 𝜑)𝑑𝜑

𝑡𝑝
0

.     (37) 

From the above two equations, we have 

𝜓(𝑡𝑝+1) − 𝜓(𝑡𝑝) =
1

𝜔(𝜂)
[∫ (𝑡𝑝+1 − 𝜑)

𝜂−1
𝑘(𝜓, 𝜑)𝑑𝜑

𝑡𝑝+1
0

− ∫ (𝑡𝑝 − 𝜑)
𝜂−1

𝑘(𝜓, 𝜑)𝑑𝜑
𝑡𝑝
0

]. (38) 

The application of the handled scheme with Lagrange polynomial interpolation gives the 

following numerical iteration formula. 

𝑃𝑝+1 =
𝜂ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓1(𝑡𝑚, 𝑃𝑚)[(𝑝 − 𝑚 + 1)𝜂(𝑝 − 𝑚 + 2 + 2휂) − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 2 + 2휂)] −𝑟
𝑚=0

ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓1(𝑡𝑚−1, 𝑃𝑚−1)[(𝑝 − 𝑚 + 1)𝜂+1 − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 1 + 휂)]𝑟
𝑚=0 .     (39) 

Where,  

𝑓1(𝑡, 𝑃) = 𝛼
𝜂[𝐷 − 𝑆]         (40) 

𝐷𝑝+1 =
𝜂ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓2(𝑡𝑚, 𝐷𝑚)[(𝑝 − 𝑚 + 1)𝜂(𝑝 − 𝑚 + 2 + 2휂) − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 2 + 2휂)] −𝑟
𝑚=0

ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓2(𝑡𝑚−1, 𝐷𝑚−1)[(𝑝 − 𝑚 + 1)𝜂+1 − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 1 + 휂)]𝑟
𝑚=0 .     (41) 

Where,  

𝑓2(𝑡, 𝐷) = 𝛽
𝜂(𝑃𝑑 − 𝑃)[1 − 𝛽1

𝜂(𝑃𝑑 − 𝑃)
2] + 𝐹𝑑.     (42) 

𝑆𝑝+1 =
𝜂ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓3(𝑡𝑚, 𝑆𝑚)[(𝑝 − 𝑚 + 1)𝜂(𝑝 − 𝑚 + 2 + 2휂) − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 2 + 2휂)] −𝑟
𝑚=0

ℎ𝜂

𝜔(𝜂+2)
∑ 𝑓3(𝑡𝑚−1, 𝑆𝑚−1)[(𝑝 − 𝑚 + 1)𝜂+1 − (𝑝 − 𝑚)𝜂(𝑝 − 𝑚 + 1 + 휂)]𝑟
𝑚=0      (43) 

where 𝑓3(𝑡, 𝑆) = −𝛾
𝜂(𝑃𝑠 − 𝑃) + 𝛿

𝜂[𝐷 − 𝑆] + 𝐹𝑠 .   

8. Conclusions 

We present a mathematical model that describes the dynamics of demand and supply, which 

genialized the Marshall model and collectability factor. Collectability is seen more often in reality, and 

many stocks are overvalued. According to the Marshall model, market equilibrium is the only global 

attractor. When the delay parameter crosses are below the critical value 𝜏 < 3.6999  , the entire 

demand-supply surplus initial shows fluctuations for these perturbations and when delay parameter 

cross the critical value (𝜏 ≥ 3.6999), market enters the danger zone i.e., small perturbations lead to 

regular market fluctuations around market equilibrium, recession, large growth cycles, and flash crash. 

The caputo operator is used to examine the frcational part of the demand and supply dynamics. The 

recently proposed model includes a wider variety of market phenomena connected to supply and 

demand dynamics. Further, the stability of fluctuations around market equilibrium, recession, large 

growth cycles, and flash crash is also examined. Thus, this model offers insights into the intricacies of 

real-world markets and their directional analysis to various disturbances by integrating the 

collectability component and examining the influence of the delay parameter. 
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