In this paper we continue presenting new types of soft operators for supra soft topological spaces (or SSTSs). Specifically, we investigate more interesting properties and relationships between the supra soft somewhere dense interior (or SS-sd-interior) operator, the SS-sd-closure operator, the SS-sd-cluster operator, and the SS-sd-boundary operator. We prove that the SS-sd-interior operator, SS-sd-boundary operator, and SS-sd-exterior operator form a partition for the absolute soft set. Furthermore, we apply the notion of SS-sd-sets to soft continuity. In addition, we use the SS-sd-interior operator and the SS-sd-closure operator to provide equivalent conditions and many characterizations for SS-sd-continuous, SS-sd-irresolute, SS-sd-open, SS-sd-closed, and SS-sd-homeomorphism maps. Examples include the following: The soft mapping is an SS-sd-homeomorphism if, and only if it is both SS-sd-continuous and an SS-sd-closed if, and only if, the soft mapping in addition to its inverse is SS-sd-continuous. Moreover, a bijective soft mapping is SS-sd-open if, and only if, it is SS-sd-closed. Furthermore, we provide many examples and counterexamples to show our results, which are extensions of previous studies. A diagram summarizing our results is also introduced.
Citation: Alaa M. Abd El-latif, Mesfer H. Alqahtani. Novel categories of supra soft continuous maps via new soft operators[J]. AIMS Mathematics, 2024, 9(3): 7449-7470. doi: 10.3934/math.2024361
In this paper we continue presenting new types of soft operators for supra soft topological spaces (or SSTSs). Specifically, we investigate more interesting properties and relationships between the supra soft somewhere dense interior (or SS-sd-interior) operator, the SS-sd-closure operator, the SS-sd-cluster operator, and the SS-sd-boundary operator. We prove that the SS-sd-interior operator, SS-sd-boundary operator, and SS-sd-exterior operator form a partition for the absolute soft set. Furthermore, we apply the notion of SS-sd-sets to soft continuity. In addition, we use the SS-sd-interior operator and the SS-sd-closure operator to provide equivalent conditions and many characterizations for SS-sd-continuous, SS-sd-irresolute, SS-sd-open, SS-sd-closed, and SS-sd-homeomorphism maps. Examples include the following: The soft mapping is an SS-sd-homeomorphism if, and only if it is both SS-sd-continuous and an SS-sd-closed if, and only if, the soft mapping in addition to its inverse is SS-sd-continuous. Moreover, a bijective soft mapping is SS-sd-open if, and only if, it is SS-sd-closed. Furthermore, we provide many examples and counterexamples to show our results, which are extensions of previous studies. A diagram summarizing our results is also introduced.
[1] | O. Njastad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961 |
[2] | C. C. Pugh, Real mathematical analysis, Springer Science and Business Media, 2003. |
[3] | T. M. Al-Shami, Somewhere dense sets and S$T_1$ spaces, Punjab Univ. J. Math., 49 (2017), 101–111. |
[4] | A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, On supra topological spaces, Indian J. Pure Ap. Mat., 4 (1983), 502–510. |
[5] | A. M. Kozae, M. Shokry, M. Zidan, Supra topologies for digital plane, AASCIT Commun., 3 (2016), 1–10. |
[6] | T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7 |
[7] | T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021) 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 |
[8] | T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2 |
[9] | D. A. Molodtsov, Soft set theory–-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[10] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 |
[11] | B. Ahmad, A. Kharal, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025 |
[12] | S. Al Ghour, J. Al-Mufarrij, Between soft complete continuity and soft somewhat-continuity, Symmetry, 15 (2023), 2056. https://doi.org/10.3390/sym15112056 doi: 10.3390/sym15112056 |
[13] | I. Zorlutuna, H. $Ç$akir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147 |
[14] | Z. A. Ameen, M. H. Alqahtani, Some classes of soft functions defined by soft open sets modulo soft sets of the first category, Mathematics, 11 (2023), 4368. https://doi.org/10.3390/math11204368 doi: 10.3390/math11204368 |
[15] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 |
[16] | N. Çagman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 |
[17] | I. Arokiarani, A. A. Lancy, Generalized soft g$\beta$-closed sets and soft gs$\beta$-closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 17–23. |
[18] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft semi separation axioms and irresolute soft functions, Ann. Fuzzy Math. Inform., 8 (2014), 305–318. https://doi.org/10.12785/amis/080524 doi: 10.12785/amis/080524 |
[19] | B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. https://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136 |
[20] | S. A. El-Sheikh, A. M. El-Latif, Characterization of b-open soft sets in soft topological spaces, J. New Th., 2 (2015), 8–18. |
[21] | M. Akdag, A. Ozkan, Soft b-open sets and soft b-continuous functions, Math. Sci., 8 (2014), 124. https://doi.org/10.1007/s40096-014-0124-7 doi: 10.1007/s40096-014-0124-7 |
[22] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, $\gamma$-operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181–196. |
[23] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft ideal theory, soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1595–1603. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413 |
[24] | A. H. Hussain, S. A. Abbas, A. M. Salman, N. A. Hussein, Semi soft local function which generated a new topology in soft ideal spaces, J. Interdiscip. Math., 22 (2019), 1509–1517. https://doi.org/10.1080/09720502.2019.1706848 doi: 10.1080/09720502.2019.1706848 |
[25] | F. Gharib, A. M. A. El-latif, Soft semi local functions in soft ideal topological spaces, Eur. J. Pure Appl. Math., 12 (2019), 857–869. https://doi.org/10.29020/nybg.ejpam.v12i3.3442 doi: 10.29020/nybg.ejpam.v12i3.3442 |
[26] | A. M. A. El-latif, Generalized soft rough sets and generated soft ideal rough topological spaces, J. Intell. Fuzzy Syst., 34 (2018), 517–524. https://doi.org/10.3233/JIFS-17610 doi: 10.3233/JIFS-17610 |
[27] | M. Akdag, F. Erol, Soft I-sets and soft I-continuity of functions, Gazi Univ. J. Sci., 27 (2014), 923–932. |
[28] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, $\gamma$-operation and decompositions of some forms of soft continuity of soft topological spaces via soft ideal, Ann. Fuzzy Math. Inform., 9 (2015), 385–402. |
[29] | H. I. Mustafa, F. M. Sleim, Soft generalized closed sets with respect to an ideal in soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 665–671. https://doi.org/10.12785/amis/080225 doi: 10.12785/amis/080225 |
[30] | A. A. Nasef, M. Parimala, R. Jeevitha, M. K. El-Sayed, Soft ideal theory and applications, Int. J. Nonlinear Anal. Appl., 13 (2022), 1335–1342. https://doi.org/10.22075/ijnaa.2022.6266 doi: 10.22075/ijnaa.2022.6266 |
[31] | S. A. Abbas, S. N. Al-Khafaji, A. H. Hussain, E. K. Mouajeeb, M. S. Rasheed, Novel of soft sets and soft topologies in soft ideal spaces, J. Interdiscip. Math., 3 (2020), 791–802. https://doi.org/10.1080/09720502.2019.1706857 doi: 10.1080/09720502.2019.1706857 |
[32] | Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015 |
[33] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft regularity and normality based on semi open soft sets and soft ideals, Appl. Math. Inf. Sci. Lett., 3 (2015), 47–55. https://doi.org/10.12785/amisl/030202 doi: 10.12785/amisl/030202 |
[34] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft semi (quasi) Hausdorff spaces via soft ideals, South Asian J. Math., 4 (2014), 265–284. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413 |
[35] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft connectedness via soft ideals, J. New Results Sci., 4 (2014), 90–108. |
[36] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft semi compactness via soft ideals, Appl. Math. Inf. Sci., 8 (2014), 2297–2306. https://doi.org/10.12785/amis/080524 doi: 10.12785/amis/080524 |
[37] | T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. http://dx.doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378 |
[38] | T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A |
[39] | Z. A. Ameen, T. M. Al-shami, B. A. Asaad, Further properties of soft somewhere dense continuous functions and soft Baire spaces, J. Math. Comput. Sci., 32 (2023), 54–63. https://doi.org/10.22436/jmcs.032.01.05 doi: 10.22436/jmcs.032.01.05 |
[40] | B. A. Asaad, T. M. Al-shami, Z. A. Ameen, On soft somewhere dense open functions and soft Baire spaces, Iraqi J. Sci., 64 (2023), 373–384. https://doi.org/10.24996/ijs.2023.64.1.35 doi: 10.24996/ijs.2023.64.1.35 |
[41] | M. E. El-Shafei, T. M. Al-Shami, Some operators of a soft set and soft connected spaces using soft somewhere dense sets, J. Interdiscip. Math., 24 (2021), 1471–1495. https://doi.org/10.1080/09720502.2020.1842348 doi: 10.1080/09720502.2020.1842348 |
[42] | S. Al Ghour, Soft C-continuity and soft almost C-continuity between soft topological spaces, Heliyon, 9 (2023), e16363. https://doi.org/10.1016/j.heliyon.2023.e16363 doi: 10.1016/j.heliyon.2023.e16363 |
[43] | S. Al Ghour, Soft functions via soft semi $\omega$-open sets, J. Math. Comput. Sci., 30 (2023), 133–146. https://doi.org/10.22436/jmcs.030.02.05 doi: 10.22436/jmcs.030.02.05 |
[44] | S. A. El-Sheikh, A. M. A. El-latif, Decompositions of some types of supra soft sets and soft continuity, Int. J. Math. Tre. Technol., 9 (2014), 37–56. https://doi.org/10.14445/22315373/IJMTT-V9P504 doi: 10.14445/22315373/IJMTT-V9P504 |
[45] | A. M. A. El-latif, Decomposition of supra soft locally closed sets and supra slc-continuity, Int. J. Nonlinear Anal. Appl., 9 (2018), 13–25. http://dx.doi.org/10.22075/ijnaa.2018.12727.1651 doi: 10.22075/ijnaa.2018.12727.1651 |
[46] | A. M. A. El-latif, M. H. Alqahtani, A new soft operators related to supra soft $\delta_i$-open sets and applications, AIMS Math., 9 (2024), 3076–3096. https://doi.org/10.3934/math.2024150 doi: 10.3934/math.2024150 |
[47] | L. Lincy, A. Kalaichelvi, Supra soft regular open sets, supra soft regular closed sets and supra soft regular continuity, Int. J. Pure Appl. Math., 119 (2018), 1075–1079. |
[48] | A. M. A. El-latif, S. Karataş, Supra $b$-open soft sets and supra $b$-soft continuity on soft topological spaces, J. Math. Comput. Appl. Res., 5 (2015), 1–18. https://doi.org/10.18576/msl/050202 doi: 10.18576/msl/050202 |
[49] | A. M. A. El-latif, Soft supra strongly generalized closed sets, J. Intell. Fuzzy Syst., 31 (2016), 1311–1317. https://doi.org/10.3233/IFS-162197 doi: 10.3233/IFS-162197 |
[50] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Supra generalized closed soft sets with respect to an soft ideal in supra soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1731–1740. https://doi.org/10.12785/amis/080430 doi: 10.12785/amis/080430 |
[51] | T. M. Al-shami, J. C. R. Alcantud, A. A. Azzam, Two new families of supra-soft topological spaces defined by separation axioms, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10234488 doi: 10.3390/math10234488 |
[52] | T. M. Al-shami, M. E. El-Shafei, Two new types of separation axioms on supra soft separation spaces, Demonstr. Math., 52 (2019), 147–165. https://doi.org/10.1515/dema-2019-0016 doi: 10.1515/dema-2019-0016 |
[53] | A. M. A. El-latif, Novel types of supra soft operators via supra soft sd-sets and applications, AIMS Math., 9 (2024), 6586–6602. https://doi.org/10.3934/math.2024321 doi: 10.3934/math.2024321 |
[54] | I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185. |
[55] | A. Alpers, Digital topology: Regular sets and root images of the cross-median filter, J. Math. Imaging Vis., 17 (2002), 7–14. https://doi.org/10.1023/A:1020766406935 doi: 10.1023/A:1020766406935 |