Research article Special Issues

On the power sums problem of bi-periodic Fibonacci and Lucas polynomials

  • Received: 13 December 2023 Revised: 25 January 2024 Accepted: 08 February 2024 Published: 23 February 2024
  • MSC : 11B39, 11B37

  • This paper mainly discussed the power sums of bi-periodic Fibonacci and Lucas polynomials. In addition, we generalized these results to obtain several congruences involving the divisible properties of bi-periodic Fibonacci and Lucas polynomials.

    Citation: Tingting Du, Li Wang. On the power sums problem of bi-periodic Fibonacci and Lucas polynomials[J]. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379

    Related Papers:

  • This paper mainly discussed the power sums of bi-periodic Fibonacci and Lucas polynomials. In addition, we generalized these results to obtain several congruences involving the divisible properties of bi-periodic Fibonacci and Lucas polynomials.



    加载中


    [1] N. Yilmaz, A. Coskun, N. Taskara, On properties of bi-periodic Fibonacci and Lucas polynomials, AIP. Conf. P., 1863 (2017), 310002. https://doi.org/10.1063/1.4992478 doi: 10.1063/1.4992478
    [2] Y. Choo, On the reciprocal sums of products of two generalized bi-periodic Fibonacci numbers, Mathematics, 9 (2021), 178. https://doi.org/10.3390/math9020178 doi: 10.3390/math9020178
    [3] T. Du, Z. Wu, Some identities involving the bi-periodic Fibonacci and Lucas polynomials, AIMS Math., 8 (2023), 5838–5846. https://doi.org/ 10.3934/math2023294 doi: 10.3934/math2023294
    [4] H. H. Leung, Some binomial-sum identities for the generalized bi-periodic Fibonacci sequences, Notes Number Theory Discrete Math., 26 (2020), 199–208. https://doi.org/10.7546/nntdm.2020.26.1.199-208 doi: 10.7546/nntdm.2020.26.1.199-208
    [5] T. Du, Z. Wu, On the reciprocal products of generalized Fibonacci sequences, J. Inequal. Appl., 2022 (2022), 154. https://doi.org/10.1186/s13660-022-02889-8 doi: 10.1186/s13660-022-02889-8
    [6] Y. Choo, Relations between generalized bi-periodic Fibonacci and Lucas sequences, Mathematics, 8 (2020), 1527. https://doi.org/10.3390/math8091527 doi: 10.3390/math8091527
    [7] X. Li, Some identities involving chebyshev polynomials, Math. Probl. Eng., 5 (2015), 950695. https://doi.org/10.1155/2015/950695 doi: 10.1155/2015/950695
    [8] L. Chen, W. Zhang, Chebyshev polynomials and their some interesting applications, Adv. Differ. Equ., 2017 (2017), 303. https://doi.org/10.1186/s13662-017-1365-1 doi: 10.1186/s13662-017-1365-1
    [9] T. Wang, H. Zhang, Some identities involving the derivative of the first kind cebyshev polynomials, Math. Probl. Eng., 7 (2015), 146313. https://doi.org/10.1155/2015/146313 doi: 10.1155/2015/146313
    [10] X. Wang, On the power sum problem of Lucas polynomials and its divisible property, Open Math., 16 (2018), 698–703. https://doi.org/10.1515/math-2018-0063 doi: 10.1515/math-2018-0063
    [11] R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, Fibonacci Quart., 46/47 (2008/2009), 312–315.
    [12] T. Wang, W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, 55 (2012), 95–103.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(791) PDF downloads(118) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog