This article presents the cotangent fractional Gronwall inequality, a novel understanding of the Gronwall inequality within the context of the cotangent fractional derivative. We furnish an explanation of the cotangent fractional derivative and emphasize a selection of its distinct characteristics before delving into the primary findings. We present the cotangent fractional Gronwall inequality (Lemma 3.1) and a Corollary 3.2 using the Mittag-Leffler function, we establish singularity and compute an upper limit employing the Mittag-Leffler function for solutions in a nonlinear delayed cotangent fractional system, illustrating its practical utility. To underscore the real-world relevance of the theory, a tangible instance is given.
Citation: Lakhlifa Sadek, Ali Akgül, Ahmad Sami Bataineh, Ishak Hashim. A cotangent fractional Gronwall inequality with applications[J]. AIMS Mathematics, 2024, 9(4): 7819-7833. doi: 10.3934/math.2024380
This article presents the cotangent fractional Gronwall inequality, a novel understanding of the Gronwall inequality within the context of the cotangent fractional derivative. We furnish an explanation of the cotangent fractional derivative and emphasize a selection of its distinct characteristics before delving into the primary findings. We present the cotangent fractional Gronwall inequality (Lemma 3.1) and a Corollary 3.2 using the Mittag-Leffler function, we establish singularity and compute an upper limit employing the Mittag-Leffler function for solutions in a nonlinear delayed cotangent fractional system, illustrating its practical utility. To underscore the real-world relevance of the theory, a tangible instance is given.
[1] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[2] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[3] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernels: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[4] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |
[5] | A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integr. Equ. Oper. Theory, 71 (2011), 583–600. https://doi.org/10.1007/s00020-011-1918-8 |
[6] | L. Sadek, T. A. Lazar, On Hilfer cotangent fractional derivative and a particular class of fractional problems, AIMS Mathematics, 8 (2023), 28334–28352. https://doi.org/10.3934/math.20231450 doi: 10.3934/math.20231450 |
[7] | L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. https://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444 |
[8] | D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-017-1043-5 |
[9] | D. Bainov, P. Simeonov, Integral inequalities and applications, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-015-8034-2 |
[10] | D. L. Rasmussen, Gronwall's inequality for functions of two independent variables, J. Math. Anal. Appl., 55 (1976), 407–417. https://doi.org/10.1016/0022-247X(76)90171-2 doi: 10.1016/0022-247X(76)90171-2 |
[11] | S. S. Dragomir, Some Gronwall type inequalities and applications, RGMIA Monographs, Victoria Univ., 2003. |
[12] | X. Lin, A note on Gronwall's inequality on time scales, Abstr. Appl. Anal., 2014 (2014), 623726. https://doi.org/10.1155/2014/623726 doi: 10.1155/2014/623726 |
[13] | W. Wang, Y. Feng, Y. Wang, Nonlinear Gronwall-Bellman type inequalities and their applications, Mathematics, 5 (2017), 31. https://doi.org/10.3390/math5020031 doi: 10.3390/math5020031 |
[14] | R. Hilfer, Applications of fractional calculus in physics, Singapore: Word Scientific, 2000. https://doi.org/10.1142/3779 |
[15] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486 |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, In: North-Holland mathematics studies, 204 (2006), 1–523. |
[17] | R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10 |
[18] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, 198 (1999), 1–340. |
[19] | L. Sadek, Controllability and observability for fractal linear dynamical systems, J. Vib. Control, 29 (2023), 4730–4740. https://doi.org/10.1177/10775463221123354 doi: 10.1177/10775463221123354 |
[20] | L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dynam. Control, 11 (2023), 1276–1284. https://doi.org/10.1007/s40435-022-01061-w doi: 10.1007/s40435-022-01061-w |
[21] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |
[22] | O. Sadek, L. Sadek, S. Touhtouh, A. Hajjaji, The mathematical fractional modeling of TiO$_2$ nanopowder synthesis by sol-gel method at low temperature, Math. Model. Comput., 9 (2022), 616–626. https://doi.org/10.23939/mmc2022.03.616 doi: 10.23939/mmc2022.03.616 |
[23] | Z. Zhang, Z. Wei, A generalized Gronwall inequality and its application to fractional neutral evolution inclusions, J. Inequal. Appl., 2016 (2016), 45. https://doi.org/10.1186/s13660-016-0991-6 doi: 10.1186/s13660-016-0991-6 |
[24] | J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discrete Math., 12 (2018), 36–48. https://doi.org/10.2298/AADM1801036A doi: 10.2298/AADM1801036A |
[25] | T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5 |
[26] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0 |
[27] | T. Abdeljawad, J. Alzabut, F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Differ. Equ., 2017 (2017), 321. https://doi.org/10.1186/s13662-017-1383-z doi: 10.1186/s13662-017-1383-z |
[28] | T. Abdeljawad, R. P. Agarwal, J. Alzabut, F. Jarad, A. Özbekler, Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, J. Inequal. Appl., 2018 (2018), 143. https://doi.org/10.1186/s13660-018-1731-x doi: 10.1186/s13660-018-1731-x |
[29] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[30] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[31] | D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. |
[32] | D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48. |