In this paper, we introduced the concept of $ C $-star bodies in a fixed pointed closed convex cone $ C $ and studied the dual mixed volume for $ C $-star bodies. For $ C $-star bodies, we established the corresponding dual Brunn-Minkowski inequality, dual Minkowski inequality, and dual Aleksandrov-Fenchel inequality. Moveover, we found that the dual Brunn-Minkowski inequality for $ C $-star bodies can strengthen the Brunn-Minkowski inequality for $ C $-coconvex sets.
Citation: Xudong Wang, Tingting Xiang. Dual Brunn-Minkowski inequality for $ C $-star bodies[J]. AIMS Mathematics, 2024, 9(4): 7834-7847. doi: 10.3934/math.2024381
In this paper, we introduced the concept of $ C $-star bodies in a fixed pointed closed convex cone $ C $ and studied the dual mixed volume for $ C $-star bodies. For $ C $-star bodies, we established the corresponding dual Brunn-Minkowski inequality, dual Minkowski inequality, and dual Aleksandrov-Fenchel inequality. Moveover, we found that the dual Brunn-Minkowski inequality for $ C $-star bodies can strengthen the Brunn-Minkowski inequality for $ C $-coconvex sets.
[1] | S. Artstein-Avidan, S. Sadovsky, K. Wyczesany, A zoo of dualities, J. Geom. Anal., 33 (2023). https://doi.org/10.1007/s12220-023-01302-0 |
[2] | H. Federer, Geometric Measure Theory, Berlin: Springer Press, 1969. http://dx.doi.org/10.1007/978-3-642-62010-2 |
[3] | R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342 (1994), 435–445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7 doi: 10.1090/S0002-9947-1994-1201126-7 |
[4] | R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math., 140 (1994), 435–447. https://doi.org/10.2307/2118606 doi: 10.2307/2118606 |
[5] | R. J. Gardner, S. Vassallo, Stability of inequality in the dual Brunn-Minkowski theory, J. Math. Anal. Appl., 231 (1999), 568–587. http://dx.doi.org/10.1006/jmaa.1998.6254 doi: 10.1006/jmaa.1998.6254 |
[6] | R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405. http://dx.doi.org/10.1090/S0273-0979-02-00941-2 doi: 10.1090/S0273-0979-02-00941-2 |
[7] | R. J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math., 149 (1999), 691–703. https://doi.org/10.2307/120978 doi: 10.2307/120978 |
[8] | Y. Huang, E. Lutwak, D. Yang, G. Y. Zhang, Geomtric measures in the dual Brunn-Minkowski theory and their assciated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6 |
[9] | A. Khovanskiĭ, V. Timorin, On the theory of coconvex bodies, Discrete Comput. Geom., 52 (2014), 806–823. http://dx.doi.org/10.1007/s00454-014-9637-y doi: 10.1007/s00454-014-9637-y |
[10] | E. Lutwak, Dual mixed volumes, Pac. J. Math., 58 (1975), 531–538. http://dx.doi.org/10.2140/pjm.1975.58.531 |
[11] | E. Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl., 119 (1979), 139–148. http://dx.doi.org/10.1007/BF02413172 doi: 10.1007/BF02413172 |
[12] | E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232–261. http://dx.doi.org/10.1016/0001-8708(88)90077-1 doi: 10.1016/0001-8708(88)90077-1 |
[13] | E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365–391. http://dx.doi.org/10.1112/plms/s3-60.2.365 doi: 10.1112/plms/s3-60.2.365 |
[14] | E. Lutwak, Chapter 1.5-selected affine isoperimetric inequalities, Handbook convex geo., 1993,153–176. http://dx.doi.org/10.1016/B978-0-444-89596-7.50010-9 |
[15] | E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed Volumes and the Minkowski Problem, J. Differ. Geom., 38 (1993), 131–150. http://dx.doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097 |
[16] | E. Lutwak, The Brunn-Minkowski-Firey Theory II: Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. http://dx.doi.org/10.1006/aima.1996.0022 doi: 10.1006/aima.1996.0022 |
[17] | G. S. Leng, The Brunn-Minkowski inequality for volume differrences, Adv. in Appl. Math., 32 (2004), 615–624. https://doi.org/10.1016/S0196-8858(03)00095-2 doi: 10.1016/S0196-8858(03)00095-2 |
[18] | L. Losonczi, Z. Páles, Inequalities for indefinite forms, J. Math. Anal. Appl., 205 (1997), 148–156. http://dx.doi.org/10.1006/jmaa.1996.5188 doi: 10.1006/jmaa.1996.5188 |
[19] | Q. R. Li, W. M. Sheng, X. J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893–923. https://doi.org/10.4171/JEMS/936 doi: 10.4171/JEMS/936 |
[20] | E. Lutwak, D. Yang, G. Y. Zhang, $L_{p}$ dual curvature measures, Adv. Math., 329 (2018), 85–132. https://doi.org/10.1016/j.aim.2018.02.011 doi: 10.1016/j.aim.2018.02.011 |
[21] | N. Li, D. P. Ye, B. C. Zhu, The dual Minkowski problem for unbounded closed convex sets, Math. Ann., 388 (2024), 2001–2039. https://doi.org/10.1007/s00208-023-02570-5 doi: 10.1007/s00208-023-02570-5 |
[22] | E. Milman, L. Rotem, Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math., 262 (2014), 867–908. http://dx.doi.org/10.1016/j.aim.2014.05.023. doi: 10.1016/j.aim.2014.05.023 |
[23] | A. Rashkovskii, Copolar convexity, Ann. Pol. Math., 120 (2017), 83–95. http://dx.doi.org/10.4064/ap170217-4-9 |
[24] | R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2 Eds., Combridge: Cambridge Univ. Press, 2014. |
[25] | R. Schneider, A Brunn-Minkowski theory for coconvex sets of finite volume, Adv. Math., 332 (2018), 199–234. http://dx.doi.org/10.1016/j.aim.2018.05.018 doi: 10.1016/j.aim.2018.05.018 |
[26] | R. Schneider, Minkowski type theorems for convex sets in cones, Acta Math. Hung., 164 (2021), 282–295. http://dx.doi.org/10.1007/s10474-020-01119-1 doi: 10.1007/s10474-020-01119-1 |
[27] | R. Schneider, Pseudo-cones, Adv. Appl. Math., 155 (2024). http://dx.doi.org/10.1016/j.aam.2023.102657 |
[28] | R. Schneider, A weighted Minkowski theorem for pseudo-cones, arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2310.19562 |
[29] | Y. Xu, J. Li, G. S. Leng, Dualities and endomorphisms of pseudo-cones, Adv. Appl. Math., 142 (2023), 102434. https://doi.org/10.1016/j.aam.2022.102434 doi: 10.1016/j.aam.2022.102434 |
[30] | J. Yang, D. P. Ye, B. C. Zhu, On the $L_p$ Brunn-Minkowski theory and the $L_p$ Minkowski problem for $C$-coconvex sets, Int. Math. Res. Not., 2023 (2023), 6252–6290. https://doi.org/10.1093/imrn/rnab360 doi: 10.1093/imrn/rnab360 |
[31] | G. Y. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc., 345 (1994), 777–801. https://doi.org/10.1090/S0002-9947-1994-1254193-9 doi: 10.1090/S0002-9947-1994-1254193-9 |
[32] | G. Y. Zhang, Intersection bodies and the Busemann-Petty inequalities in $\mathbb{R}^4$, Ann of Math., 140 (1994), 331–346. https://doi.org/10.2307/2118603 doi: 10.2307/2118603 |
[33] | G. Y. Zhang, A positive solution to the Busemann-Petty problem in $\mathbb{R}^4$, Ann. of Math., 149 (1999), 535–543. https://doi.org/10.2307/120974 doi: 10.2307/120974 |