Research article Special Issues

Interface vanishing of $ d-\delta $ systems

  • Received: 03 November 2023 Revised: 18 February 2024 Accepted: 18 February 2024 Published: 23 February 2024
  • MSC : 35B65, 35Q61, 36L40

  • We introduce $ d-\delta $ systems on differential forms in Eucliean spaces and show the interface vanishing of the solution. This result generalizes previous theorems on stationary and non-stationary Maxwell's equation. Other applications are also given.

    Citation: Takashi Suzuki, Kazuo Watanabe. Interface vanishing of $ d-\delta $ systems[J]. AIMS Mathematics, 2024, 9(4): 7848-7865. doi: 10.3934/math.2024382

    Related Papers:

  • We introduce $ d-\delta $ systems on differential forms in Eucliean spaces and show the interface vanishing of the solution. This result generalizes previous theorems on stationary and non-stationary Maxwell's equation. Other applications are also given.



    加载中


    [1] T. Kobayashi, T. Suzuki, K. Watanabe, Interface regularity for Maxwell and Stokes systems, Osaka J. Math., 40 (2003), 925–943.
    [2] T. Kobayashi, T. Suzuki, K. Watanabe, Interface vanising for solutions to Maxwell and Stokes systems, J. Math. Fluid Mech., 8 (2006), 382–397. https://doi.org/10.1007/S00021-004-0148-0 doi: 10.1007/S00021-004-0148-0
    [3] M. Kanou, T. Sato, K. Watanabe, Interface regularity of the solutions for the rotation free and divergence free system in Euclidian space, Tokyo J. Math., 36 (2013), 473–482. https://doi.org/10.3836/tjm/1391177982 doi: 10.3836/tjm/1391177982
    [4] T. Suzuki, Interface vanishing for nonstationary Maxwell equation, Adv. Math. Sci. Appl., 30 (2021), 555–570.
    [5] D. B. Geselowitz, On bioelastic potentials in an inhomogeneous volume conductor, Biophys. J., 7 (1967), 1–11. https://doi.org/10.1016/S0006-3495(67)86571-8 doi: 10.1016/S0006-3495(67)86571-8
    [6] D. B. Geselowitz, On the magnetic field generated outside on inhomogeneous volume conductor by integral current sources, IEEE Trans. Magn., 6 (1970), 346–347. https://doi.org/10.1109/TMAG.1970.1066765 doi: 10.1109/TMAG.1970.1066765
    [7] H. Flanders, Differential forms with applications to the physical sciences, New York: Academic Press, 1963.
    [8] V. Girault, P. A. Raviart, Finite element methods for Navier-Stokes equations, theory and applications, Berlin: Springer, 1986.
    [9] A. Kufner, O. John, S. Fučik, Function spaces, Prague: Academia, 1977.
    [10] J. Nečas, Le methodes directres en théorie des equations elliptiques, Paris: Masson, 1967.
    [11] S. Morita, Geometry of differential forms, Providence: American Mathematical Society, 2001.
    [12] M. Kanou, T. Sato, K. Watanabe, Interface regularity of the solutions to the systems on Riemannian manifold, Tokyo J. Math., 39 (2016), 83–100. https://doi.org/10.3836/tjm/1459367259 doi: 10.3836/tjm/1459367259
    [13] J. D. Jackson, Classical electrodynamics, 3 eds., New York: Wiley, 1999.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(75) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog