We introduce $ d-\delta $ systems on differential forms in Eucliean spaces and show the interface vanishing of the solution. This result generalizes previous theorems on stationary and non-stationary Maxwell's equation. Other applications are also given.
Citation: Takashi Suzuki, Kazuo Watanabe. Interface vanishing of $ d-\delta $ systems[J]. AIMS Mathematics, 2024, 9(4): 7848-7865. doi: 10.3934/math.2024382
We introduce $ d-\delta $ systems on differential forms in Eucliean spaces and show the interface vanishing of the solution. This result generalizes previous theorems on stationary and non-stationary Maxwell's equation. Other applications are also given.
[1] | T. Kobayashi, T. Suzuki, K. Watanabe, Interface regularity for Maxwell and Stokes systems, Osaka J. Math., 40 (2003), 925–943. |
[2] | T. Kobayashi, T. Suzuki, K. Watanabe, Interface vanising for solutions to Maxwell and Stokes systems, J. Math. Fluid Mech., 8 (2006), 382–397. https://doi.org/10.1007/S00021-004-0148-0 doi: 10.1007/S00021-004-0148-0 |
[3] | M. Kanou, T. Sato, K. Watanabe, Interface regularity of the solutions for the rotation free and divergence free system in Euclidian space, Tokyo J. Math., 36 (2013), 473–482. https://doi.org/10.3836/tjm/1391177982 doi: 10.3836/tjm/1391177982 |
[4] | T. Suzuki, Interface vanishing for nonstationary Maxwell equation, Adv. Math. Sci. Appl., 30 (2021), 555–570. |
[5] | D. B. Geselowitz, On bioelastic potentials in an inhomogeneous volume conductor, Biophys. J., 7 (1967), 1–11. https://doi.org/10.1016/S0006-3495(67)86571-8 doi: 10.1016/S0006-3495(67)86571-8 |
[6] | D. B. Geselowitz, On the magnetic field generated outside on inhomogeneous volume conductor by integral current sources, IEEE Trans. Magn., 6 (1970), 346–347. https://doi.org/10.1109/TMAG.1970.1066765 doi: 10.1109/TMAG.1970.1066765 |
[7] | H. Flanders, Differential forms with applications to the physical sciences, New York: Academic Press, 1963. |
[8] | V. Girault, P. A. Raviart, Finite element methods for Navier-Stokes equations, theory and applications, Berlin: Springer, 1986. |
[9] | A. Kufner, O. John, S. Fučik, Function spaces, Prague: Academia, 1977. |
[10] | J. Nečas, Le methodes directres en théorie des equations elliptiques, Paris: Masson, 1967. |
[11] | S. Morita, Geometry of differential forms, Providence: American Mathematical Society, 2001. |
[12] | M. Kanou, T. Sato, K. Watanabe, Interface regularity of the solutions to the systems on Riemannian manifold, Tokyo J. Math., 39 (2016), 83–100. https://doi.org/10.3836/tjm/1459367259 doi: 10.3836/tjm/1459367259 |
[13] | J. D. Jackson, Classical electrodynamics, 3 eds., New York: Wiley, 1999. |