This paper presents the first investigation of extended dissipative synchronization in a specific type of Takagi-Sugeno (T-S) fuzzy complex dynamical networks with interval hybrid coupling delays. First, the decoupling method is employed to reorganize the multiple communication dynamical system, which comprises discrete-time, partial and distributed coupling delays. Second, the non-fragile control, which allows for uncertainty management within predefined norm bounds, has been applied to networks. Moreover, it becomes possible to derive a less conservative condition by utilizing multiple integral Lyapunov functionals, a decoupling strategy, Jensen's inequality, Wirtinger's inequality, and mathematical inequality techniques. This condition ensures that the T-S fuzzy complex dynamical networks, with interval hybrid coupling delays, can attain asymptotic synchronization with the assistance of a non-fragile feedback controller. Additionally, we extended this system to the extended dissipativity analysis, including passivity, $ L_2-L_\infty, H_{\infty} $ and dissipativity performance in a unified formulation. A set of strict linear matrix inequalities (LMIs) conditions is a sufficient criterion. Finally, two simulation examples are proposed to verify the merit of the obtained results.
Citation: Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang. Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays[J]. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464
This paper presents the first investigation of extended dissipative synchronization in a specific type of Takagi-Sugeno (T-S) fuzzy complex dynamical networks with interval hybrid coupling delays. First, the decoupling method is employed to reorganize the multiple communication dynamical system, which comprises discrete-time, partial and distributed coupling delays. Second, the non-fragile control, which allows for uncertainty management within predefined norm bounds, has been applied to networks. Moreover, it becomes possible to derive a less conservative condition by utilizing multiple integral Lyapunov functionals, a decoupling strategy, Jensen's inequality, Wirtinger's inequality, and mathematical inequality techniques. This condition ensures that the T-S fuzzy complex dynamical networks, with interval hybrid coupling delays, can attain asymptotic synchronization with the assistance of a non-fragile feedback controller. Additionally, we extended this system to the extended dissipativity analysis, including passivity, $ L_2-L_\infty, H_{\infty} $ and dissipativity performance in a unified formulation. A set of strict linear matrix inequalities (LMIs) conditions is a sufficient criterion. Finally, two simulation examples are proposed to verify the merit of the obtained results.
[1] | H. Jeong, B. Tombor, R. Albert, The large-scale organization of metabolic networks, Nature, 407 (2000), 651–654. http://dx.doi.org/10.1038/35036627 doi: 10.1038/35036627 |
[2] | S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–276. http://dx.doi.org/10.1038/35065725 doi: 10.1038/35065725 |
[3] | R. J. Williams, E. L. Berlow, J. A. Dunne, A. L. Barabási, N. D. Martinez, Two degrees of separation in complex food webs, P. NatL. Acad. Sci. USA, 99 (2002), 12913–12916. http://dx.doi.org/10.1073/pnas.192448799 doi: 10.1073/pnas.192448799 |
[4] | A. Hongsri, T. Botmart, W. Weers, Improved on extended dissipative analysis for sampled-data synchronization of complex dynamical networks with coupling delays, IEEE Access, 10 (2022), 108625–108640. http://dx.doi.org/10.1109/ACCESS.2022.3213275 doi: 10.1109/ACCESS.2022.3213275 |
[5] | T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE T. Syst. Man. Cy.-S., 1 (1985), 116–132. http://dx.doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399 |
[6] | Y. Wu, R. Lu, P. Shi, H. Su, Z. G. Wu, Sampled-data synchronization of complex networks with partial couplings and T-S fuzzy nodes, IEEE T. Fuzzy Syst., 2 (2017), 782–793. http://dx.doi.org/10.1109/TFUZZ.2017.2688490 doi: 10.1109/TFUZZ.2017.2688490 |
[7] | H. Divya, R. Sakthivel, Y. Liu, Delay-dependent synchronization of T-S fuzzy Markovian jump complex dynamical networks, Fuzzy Set. Syst., 416 (2021), 108–124. http://dx.doi.org/10.1016/j.fss.2020.10.010 doi: 10.1016/j.fss.2020.10.010 |
[8] | R. Sakthivel, R. Sakthivel, B. Kaviarasan, C. Wang, Y. K. Ma, Finite-time nonfragile synchronization of stochastic complex dynamical networks with semi-Markov switching outer coupling, Complexity, 2018 (2018), 1–13. http://dx.doi.org/10.1155/2018/8546304 doi: 10.1155/2018/8546304 |
[9] | Y. Han, S. Xiang, L. Zhang, Cluster synchronization in mutually-coupled semiconductor laser networks with different topologies, Opt. Commun., 445 (2019), 262–267. http://dx.doi.org/10.1016/j.optcom.2019.04.051 doi: 10.1016/j.optcom.2019.04.051 |
[10] | Y. Jin, S. Zhong, Function projective synchronization in complex networks with switching topology and stochastic effects, Appl. Math. Comput., 259 (2015), 730–740. http://dx.doi.org/10.1016/j.amc.2015.02.080 doi: 10.1016/j.amc.2015.02.080 |
[11] | X. Qiu, G. Zhu, Y. Ding, K. Li, Successive lag synchronization on complex dynamical networks via delay-dependent impulsive control, Physica A, 531 (2019), 1–15. http://dx.doi.org/10.1016/j.physa.2019.121753 doi: 10.1016/j.physa.2019.121753 |
[12] | X. Yang, Z. Yang, Synchronization of T-S fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects, Fuzzy Set. Syst., 235 (2014), 25–43. http://dx.doi.org/10.1016/j.fss.2013.06.008 doi: 10.1016/j.fss.2013.06.008 |
[13] | L. Zhao, H. Gao, H. R. Karimi, Robust stability and stabilization of uncertain T-S fuzzy systems with time-varying delay: An input-output approach, IEEE T. Fuzzy Syst., 21 (2013), 883–897. http://dx.doi.org/10.1109/TFUZZ.2012.2235840 doi: 10.1109/TFUZZ.2012.2235840 |
[14] | Y. Tang, J. A. Fang, M. Xia, X. Gu, Synchronization of Takagi-Sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays, Appl. Math. Model., 34 (2010), 843–855. http://dx.doi.org/10.1109/TFUZZ.2010.2084570 doi: 10.1109/TFUZZ.2010.2084570 |
[15] | C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks, Phys. Rev. Lett., 23 (2006), 1–4. http://dx.doi.org/10.1103/PhysRevLett.97.238103 doi: 10.1103/PhysRevLett.97.238103 |
[16] | X. Li, S. Song, Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE T. Neur. Net. Lear., 24 (2013), 868–877. http://dx.doi.org/10.1109/TNNLS.2012.2236352 doi: 10.1109/TNNLS.2012.2236352 |
[17] | X. Li, J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE T. Automat. Contr., 62 (2017), 3618–3625. http://dx.doi.org/10.1109/TAC.2017.2669580 doi: 10.1109/TAC.2017.2669580 |
[18] | C. Huang, D. W. Ho, J. Lu, J. Kurths, Pinning synchronization in T-S fuzzy complex networks with partial and discrete-time couplings, IEEE T. Fuzzy Syst., 23 (2014), 1274–1285. http://dx.doi.org/10.1109/TFUZZ.2014.2350534 doi: 10.1109/TFUZZ.2014.2350534 |
[19] | W. He, F. Qian, J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85 (2017), 1–9. http://dx.doi.org/10.1016/j.neunet.2016.09.002 doi: 10.1016/j.neunet.2016.09.002 |
[20] | Z. Wang, Y. Liu, K. Fraser, X. Liu, Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Phys. Lett. A, 354 (2006), 288–297. http://dx.doi.org/10.1016/j.physleta.2006.01.061 doi: 10.1016/j.physleta.2006.01.061 |
[21] | G. Rajchakit, R. Sriraman, R. Lim, C. P. Sam-ang, P. Hammachukiattikul, Synchronization in finite-time analysis of Clifford-valued neural networks with finite-time distributed delays, Mathematics, 9 (2021), 1–18. http://dx.doi.org/10.3390/math9111163 doi: 10.3390/math9111163 |
[22] | G. Ling, X. Liu, M. F. Ge, Y. Wu, Delay-dependent cluster synchronization of time-varying complex dynamical networks with noise via delayed pinning impulsive control, J. Franklin I., 358 (2021), 3193–3214. http://dx.doi.org/10.1016/j.jfranklin.2021.02.004 doi: 10.1016/j.jfranklin.2021.02.004 |
[23] | Z. Xu, P. Shi, H. Su, Z. G. Wu, T. Huang, Global $ H_\infty $ pinning synchronization of complex networks with sampled-data communications, IEEE T. Neur. Net. Lear., 29 (2017), 1467–1476. http://dx.doi.org/10.1109/TNNLS.2017.2673960 doi: 10.1109/TNNLS.2017.2673960 |
[24] | T. Jing, D. Zhang, J. Mei, Y. Fan, Finite-time synchronization of delayed complex dynamic networks via aperiodically intermittent control, J. Franklin I., 356 (2019), 5464–5484. http://dx.doi.org/10.1016/j.jfranklin.2019.03.024 doi: 10.1016/j.jfranklin.2019.03.024 |
[25] | J. A. Wang, Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control, J. Franklin I., 354 (2017), 1833–1855. http://dx.doi.org/10.1016/j.jfranklin.2016.11.034 doi: 10.1016/j.jfranklin.2016.11.034 |
[26] | Z. Qin, J. L. Wang, Y. L. Huang, S. Y. Ren, Analysis and adaptive control for robust synchronization and $H_\infty$ synchronization of complex dynamical networks with multiple time-delays, Neurocomputing, 289 (2018), 241–251. http://dx.doi.org/10.1016/j.neucom.2018.02.031 doi: 10.1016/j.neucom.2018.02.031 |
[27] | P. Delellis, M. D. Bernardo, F. Garofalo, Novel decentralized adaptive strategies for the synchronization of complex networks, Automatica, 45 (2009), 1312–1318. http://dx.doi.org/10.1016/j.automatica.2009.01.001 doi: 10.1016/j.automatica.2009.01.001 |
[28] | Y. Zhong, D. Song, Nonfragile synchronization control of T-S fuzzy Markovian jump complex dynamical networks, Chaos Soliton. Fract., 170 (2023), 1–9. http://dx.doi.org/10.1016/j.chaos.2023.113342 doi: 10.1016/j.chaos.2023.113342 |
[29] | Q. Dong, S. Shi, Y. Ma, Non-fragile synchronization of complex dynamical networks with hybrid delays and stochastic disturbance via sampled-data control, ISA T., 105 (2020), 174–189. http://dx.doi.org/10.1016/j.isatra.2020.05.047 doi: 10.1016/j.isatra.2020.05.047 |
[30] | D. Li, Z. Wang, G. Ma, Controlled synchronization for complex dynamical networks with random delayed information exchanges: A non-fragile approach, Neurocomputing, 171 (2016), 1047–1052. http://dx.doi.org/10.1016/j.neucom.2015.07.041 doi: 10.1016/j.neucom.2015.07.041 |
[31] | E. Gyurkovics, K. Kiss, A. Kazemy, Non-fragile exponential synchronization of delayed complex dynamical networks with transmission delay via sampled-data control, J. Franklin I., 355 (2018), 8934–8956. http://dx.doi.org/10.1016/j.jfranklin.2018.10.005 doi: 10.1016/j.jfranklin.2018.10.005 |
[32] | R. Rakkiyappan, R. Sasirekha, S. Lakshmanan, C. P. Lim, Synchronization of discrete-time Markovian jump complex dynamical networks with random delays via non-fragile control, J. Franklin I., 353 (2016), 4300–4329. http://dx.doi.org/10.1016/j.jfranklin.2016.07.024 doi: 10.1016/j.jfranklin.2016.07.024 |
[33] | M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, E. J. Chae, Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation, J. Franklin I., 351 (2014), 4850–4871. http://dx.doi.org/10.1016/j.jfranklin.2014.07.020 doi: 10.1016/j.jfranklin.2014.07.020 |
[34] | G. Fan, Y. Ma, Non-fragile delay-dependent pinning $H_\infty$ synchronization of T-S fuzzy complex networks with hybrid coupling delays, Inf. Sci., 608 (2022), 1317–1333. http://dx.doi.org/10.1016/j.ins.2022.07.045 doi: 10.1016/j.ins.2022.07.045 |
[35] | R. Manivannan, J. Cao, K. T. Chong, Generalized dissipativity state estimation for genetic regulatory networks with interval time-delay signals and leakage delays, Commun. Nonlinear Sci., 89 (2020), 1–22. http://dx.doi.org/10.1016/j.cnsns.2020.105326 doi: 10.1016/j.cnsns.2020.105326 |
[36] | R. Saravanakumar, G. Rajchakit, M. S. Ali, Z. Xiang, Y. H. Joo, Robust extended dissipativity criteria for discrete-time uncertain neural networks with time-varying delays, Neural Comput. Appl., 30 (2018), 3893–3904. http://dx.doi.org/10.1007/s00521-017-2974-z doi: 10.1007/s00521-017-2974-z |
[37] | B. Zhang, W. X. Zheng, S. Xu, Filtering of Markovian jump delay systems based on a new performance index, IEEE T. Circuits-I, 60 (2013), 1250–1263. http://dx.doi.org/10.1109/TCSI.2013.2246213 doi: 10.1109/TCSI.2013.2246213 |
[38] | Z. Feng, W. X. Zhang, On extended dissipativity of discrete-time neural networks with time delay, IEEE T. Neur. Net. Lear., 26 (2015), 3293–3300. http://dx.doi.org/10.1109/TNNLS.2015.2399421 doi: 10.1109/TNNLS.2015.2399421 |
[39] | H. Yang, L. Shu, S. Zhong, X. Wang, Extended dissipative exponential synchronization of complex dynamical systems with coupling delay and sampled-data control, J. Franklin I., 26 (2016), 1829–1847. http://dx.doi.org/10.1016/j.jfranklin.2016.03.003 doi: 10.1016/j.jfranklin.2016.03.003 |
[40] | Y. A. Liu, J. Xia, B. Meng, X. Song, H. Shen, Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme, J. Franklin I., 357 (2020), 10900–10920. http://dx.doi.org/10.1016/j.jfranklin.2020.08.023 doi: 10.1016/j.jfranklin.2020.08.023 |
[41] | Y. Zhang, S. Liu, R. Yang, Global synchronization of fractional coupled networks with discrete and distributed delays, Physica A, 514 (2019), 830–837. http://dx.doi.org/https://doi.org/10.1016/j.physa.2018.09.129 doi: 10.1016/j.physa.2018.09.129 |
[42] | X. Wang, J. H. Park, H. Yang, X. Zhang, S. Zhong, Delay-dependent fuzzy sampled-data synchronization of T-S fuzzy complex networks with multiple couplings, IEEE T. Fuzzy Syst., 28 (2019), 178–189. http://dx.doi.org/10.1109/TFUZZ.2019.2901353 doi: 10.1109/TFUZZ.2019.2901353 |
[43] | O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, Analysis on robust $H_\infty$ performance and stability for linear systems with interval time-varying state delays via some new augmented Lyapunov-Krasovskii functional, Appl. Math. Comput., 224 (2013), 108–122. http://dx.doi.org/10.1016/j.amc.2013.08.068 doi: 10.1016/j.amc.2013.08.068 |
[44] | C. Peng, Y. C. Tian, Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, J. Comput. Appl. Math., 214 (2008), 480–494. http://dx.doi.org/10.1016/j.cam.2007.03.009 doi: 10.1016/j.cam.2007.03.009 |