Research article Special Issues

Conservation laws and symmetry analysis of a generalized Drinfeld-Sokolov system

  • Received: 30 June 2023 Revised: 28 September 2023 Accepted: 12 October 2023 Published: 20 October 2023
  • MSC : 22E60, 35G50, 35Q53

  • The generalized Drinfeld-Sokolov system is a widely-used model that describes wave phenomena in various contexts. Many properties of this system, such as Hamiltonian formulations and integrability, have been extensively studied and exact solutions have been derived for specific cases. In this paper we applied the direct method of multipliers to obtain all low-order local conservation laws of the system. These conservation laws correspond to physical quantities that remain constant over time, such as energy and momentum, and we provided a physical interpretation for each of them. Additionally, we investigated the Lie point symmetries and first-order symmetries of the system. Through the point symmetries and constructing the optimal systems of one-dimensional subalgebras, we were able to reduce the system of partial differential equations to ordinary differential systems and obtain new solutions for the system.

    Citation: Tamara M. Garrido, Rafael de la Rosa, Elena Recio, Almudena P. Márquez. Conservation laws and symmetry analysis of a generalized Drinfeld-Sokolov system[J]. AIMS Mathematics, 2023, 8(12): 28628-28645. doi: 10.3934/math.20231465

    Related Papers:

  • The generalized Drinfeld-Sokolov system is a widely-used model that describes wave phenomena in various contexts. Many properties of this system, such as Hamiltonian formulations and integrability, have been extensively studied and exact solutions have been derived for specific cases. In this paper we applied the direct method of multipliers to obtain all low-order local conservation laws of the system. These conservation laws correspond to physical quantities that remain constant over time, such as energy and momentum, and we provided a physical interpretation for each of them. Additionally, we investigated the Lie point symmetries and first-order symmetries of the system. Through the point symmetries and constructing the optimal systems of one-dimensional subalgebras, we were able to reduce the system of partial differential equations to ordinary differential systems and obtain new solutions for the system.



    加载中


    [1] R. A. Meyers, Mathematics of complexity and dynamical systems, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-1806-1
    [2] N. A. Kudryashov, D. I. Sinelshchikov, Extended models of non-linear waves in liquid with gas bubbles, Int. J. Non-Linear Mech., 63 (2014), 31–38. https://doi.org/10.1016/j.ijnonlinmec.2014.03.011 doi: 10.1016/j.ijnonlinmec.2014.03.011
    [3] L. Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech., 33 (1968), 465–474. https://doi.org/10.1017/S002211206800145X doi: 10.1017/S002211206800145X
    [4] N. Lowman, M. Hoefer, Dispersive shock waves in viscously deformable media, J. Fluid Mech., 718 (2013), 524–557. https://doi.org/10.1017/jfm.2012.628 doi: 10.1017/jfm.2012.628
    [5] D. G. Crighton, Applications of KdV, In: M. Hazewinkel, H. W. Capel, E. M. de Jager, KdV'95, Proceedings of the International Symposium held in Amsterdam, The Netherlands, April 23–26, 1995, to commemorate the centennial of the publication of the equation by and named after Korteweg and de Vries, Dordrecht: Springer, 1995, 39–67. https://doi.org/10.1007/978-94-011-0017-5_2
    [6] V. G. Drinfeld, V. V. Sokolov, Equations of Korteweg-deVries type and simple Lie algebras, Dokl. Akad. Nauk., 258 (1981), 11–16.
    [7] V. G. Drinfel'd, V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Math. Sci., 30 (1985), 1975–2036. https://doi.org/10.1007/BF02105860 doi: 10.1007/BF02105860
    [8] M. Gurses, A. Karasu, Integrable KdV systems: recursion operators of degree four, Phys. Lett. A, 251 (1999), 247–249. https://doi.org/10.1016/S0375-9601(98)00910-4 doi: 10.1016/S0375-9601(98)00910-4
    [9] A. M. Wazwaz, The Cole-Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota equation, Appl. Math. Comput., 207 (2009), 248–255. https://doi.org/10.1016/j.amc.2008.10.034 doi: 10.1016/j.amc.2008.10.034
    [10] O. Bogoyavlenskii, Breaking solitons in 2+1-dimensional integrable equations, Russ. Math. Surv., 45 (1990), 1. https://doi.org/10.1070/RM1990v045n04ABEH002377 doi: 10.1070/RM1990v045n04ABEH002377
    [11] B. Tian, Y. T. Gao, Exact solutions for the Bogoyavlenskii coupled KdV equations, Phys. Lett. A, 208 (1995), 193–196. https://doi.org/10.1016/0375-9601(95)00737-N doi: 10.1016/0375-9601(95)00737-N
    [12] H. C. Hu, S. Y. Lou, Exact solutions of Bogoyavlenskii coupled KdV equations, Commun. Theor. Phys., 42 (2004), 485–487. https://doi.org/10.1088/0253-6102/42/4/485 doi: 10.1088/0253-6102/42/4/485
    [13] J. M. Heris, M. Lakestani, Exact solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system by the analytical methods, Int. Scholarly Res. Not., 2014 (2014), 840689. https://doi.org/10.1155/2014/840689 doi: 10.1155/2014/840689
    [14] L. Huang, Y. Chen, Nonlocal symmetry and similarity reductions for the Drinfeld-Sokolov-Satsuma-Hirota system, Appl. Math. Lett., 64 (2017), 177–184. https://doi.org/10.1016/j.aml.2016.09.010 doi: 10.1016/j.aml.2016.09.010
    [15] A. Karasu, S. Y. Sakovich, Bäcklund transformation and special solutions for the Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations, J. Phys. A, 34 (2001), 7355. https://doi.org/10.1088/0305-4470/34/36/315 doi: 10.1088/0305-4470/34/36/315
    [16] L. Wu, S. Chen, C. Pang, Traveling wave solutions for generalized Drinfeld-Sokolov equations, Appl. Math. Model., 33 (2009), 4126–4130. https://doi.org/10.1016/j.apm.2009.02.013 doi: 10.1016/j.apm.2009.02.013
    [17] Y. Ugurlu, D. Kaya, Exact and numerical solutions of generalized Drinfeld-Sokolov equations, Phys. Lett. A, 372 (2008), 2867–2873. https://doi.org/10.1016/j.physleta.2008.01.003 doi: 10.1016/j.physleta.2008.01.003
    [18] Y. Long, W. Rui, B. He, C. Chen, Bifurcations of travelling wave solutions for generalized Drinfeld-Sokolov equations, Appl. Math. Mech., 27 (2006), 1549–1555. https://doi.org/10.1007/s10483-006-1113-1 doi: 10.1007/s10483-006-1113-1
    [19] S. C. Anco, G. W. Bluman, Direct construction method for conservation laws of partial differential equations part Ⅰ: examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545–566. http://doi.org/10.1017/S095679250100465X doi: 10.1017/S095679250100465X
    [20] S. C. Anco, G. W. Bluman, Direct construction method for conservation laws of partial differential equations part Ⅱ: general treatment, Eur. J. Appl. Math., 13 (2002), 567–585. https://doi.org/10.1017/S0956792501004661 doi: 10.1017/S0956792501004661
    [21] P. J. Olver, Applications of Lie groups to differential equations, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4684-0274-2
    [22] S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, In: R. Melnik, R. Makarov, J. Belair, Recent progress and modern challenges in applied mathematics, modeling and computational science, Fields Institute Communications, 79 (2017), 119–182. https://doi.org/10.1007/978-1-4939-6969-2_5
    [23] G. W. Bluman, A. Cheviakov, S. C. Anco, Applications of symmetry methods to partial differential equations, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-68028-6
    [24] N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations, volume I: symmetries, exact solutions and conservation laws, Boca Raton: CRC Press, 2009. https://doi.org/10.1201/9781003419808
    [25] D. Zeidan, B. Bira, Weak shock waves and its interaction with characteristic shocks in polyatomic gas, Math. Meth. Appl. Sci., 42 (2019), 4679–4687. https://doi.org/10.1002/mma.5675 doi: 10.1002/mma.5675
    [26] B. Bira, T. Raja Sekhar, D. Zeidan, Application of Lie groups to compressible model of two-phase flows, Comput. Math. Appl., 71 (2016), 46–56. https://doi.org/10.1016/j.camwa.2015.10.016 doi: 10.1016/j.camwa.2015.10.016
    [27] T. M. Garrido, M. S. Bruzón, Lie point symmetries and travelling wave solutions for the generalized Drinfeld-Sokolov system, J. Comput. Theor. Transp., 45 (2016), 290–298. https://doi.org/10.1080/23324309.2016.1164720 doi: 10.1080/23324309.2016.1164720
    [28] S. C. Anco, C. M. Khalique, Conservation laws of coupled semilinear wave equations, Int. J. Mod. Phys. B, 30 (2016), 1640004. https://doi.org/10.1142/S021797921640004X doi: 10.1142/S021797921640004X
    [29] S. C. Anco, Symmetry properties of conservation laws, Int. J. Mod. Phys. B, 30 (2016), 1640003. https://doi.org/10.1142/S0217979216400038 doi: 10.1142/S0217979216400038
    [30] S. C. Anco, M. L. Gandarias, E. Recio, Conservation laws and line soliton solutions of a family of modified KP equations, Discrete Contin. Dyn. Syst.-S, 13 (2020), 2655–2665. https://doi.org/10.3934/dcdss.2020225 doi: 10.3934/dcdss.2020225
    [31] T. M. Garrido, R. De la Rosa, E. Recio, M. S. Bruzón, Symmetries, solutions and conservation laws for the (2+1) filtration-absorption model, J. Math. Chem., 57 (2019), 1301–1313. https://doi.org/10.1007/s10910-018-0955-9 doi: 10.1007/s10910-018-0955-9
    [32] J. Patera, P. Winternitz, H. Zassenhaus, Continuous subgroups of the fundamental groups of physics. Ⅰ. General method and the Poincaré group, J. Math. Phys., 16 (1975), 1597–1615. https://doi.org/10.1063/1.522729 doi: 10.1063/1.522729
    [33] J. Patera, P. Winternitz, H. Zassenhaus, Continuous subgroups of the fundamental groups of physics, Ⅱ: the similitude group, J. Math. Phys., 17 (1975), 1439–1451. https://doi.org/10.1063/1.522730 doi: 10.1063/1.522730
    [34] J. Patera, P. Winternitz, Subalgebras of real three- and four-dimensional Lie algebras, J. Math. Phys., 18 (1977), 1449–1455. https://doi.org/10.1063/1.523441 doi: 10.1063/1.523441
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(967) PDF downloads(86) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog