In this manuscript, the concept of $ \digamma $-contraction is applied to extend the notion of Jaggi-Suzuki-type hybrid contraction in the framework of $ G $-metric space, which is termed Jaggi-Suzuki-type hybrid $ \digamma $-($ G $-$ \alpha $-$ \phi $)-contraction, and invariant point results which cannot be inferred from their cognate ones in metric space are established. The results obtained herein provide a new direction and are generalizations of several well-known results in fixed point theory. An illustrative, comparative example is constructed to give credence to the results obtained. Furthermore, sufficient conditions for the existence and uniqueness of solutions of certain nonlinear polynomial and integral equations are established. For the purpose of future research, an open problem is highlighted regarding discretized population balance model whose solution may be investigated from the techniques proposed herein.
Citation: Rosemary O. Ogbumba, Mohammed Shehu Shagari, Akbar Azam, Faryad Ali, Trad Alotaibi. Existence results of certain nonlinear polynomial and integral equations via $ \digamma $-contractive operators[J]. AIMS Mathematics, 2023, 8(12): 28646-28669. doi: 10.3934/math.20231466
In this manuscript, the concept of $ \digamma $-contraction is applied to extend the notion of Jaggi-Suzuki-type hybrid contraction in the framework of $ G $-metric space, which is termed Jaggi-Suzuki-type hybrid $ \digamma $-($ G $-$ \alpha $-$ \phi $)-contraction, and invariant point results which cannot be inferred from their cognate ones in metric space are established. The results obtained herein provide a new direction and are generalizations of several well-known results in fixed point theory. An illustrative, comparative example is constructed to give credence to the results obtained. Furthermore, sufficient conditions for the existence and uniqueness of solutions of certain nonlinear polynomial and integral equations are established. For the purpose of future research, an open problem is highlighted regarding discretized population balance model whose solution may be investigated from the techniques proposed herein.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223–230. |
[3] | Y. J. Cho, Survey on metric fixed point theory and applications, In: M. Ruzhansky, Y. Cho, P. Agarwal, I. Area, Advances in real and complex analysis with applications, Trends in Mathematics, Singapore: Birkhäuser, 11 (2017), 183–241. https://doi.org/10.1007/978-981-10-4337-6_9 |
[4] | S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109 |
[5] | B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329–336. |
[6] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[7] | Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete $G$-metric spaces, Fixed Point Theory Appl., 2008 (2008), 189870. https://doi.org/10.1155/2008/189870 doi: 10.1155/2008/189870 |
[8] | M. Jleli, B. Samet, Remarks on $G$-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 210. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210 |
[9] | B. Samet, C. Vetro, F. Vetro, Remarks on $G$-metric spaces, Int. J. Anal., 2013 (2013), 917158. https://doi.org/10.1155/2013/917158 doi: 10.1155/2013/917158 |
[10] | J. Chen, C. Zhu, L. Zhu, A note on some fixed point theorems on $G$-metric spaces, J. Appl. Anal. Comput., 11 (2021), 101–112. https://doi.org/10.11948/20190125 doi: 10.11948/20190125 |
[11] | E. Karapınar, R. P. Agarwal, Further fixed point results on $G$-metric space, Fixed Point Theory Appl., 2013 (2013), 154. https://doi.org/10.1186/1687-1812-2013-154 doi: 10.1186/1687-1812-2013-154 |
[12] | J. A. Jiddah, S. S. Mohammed, A. T. Imam, Advancements in fixed point results of generalized metric spaces: a survey, Sohag J. Sci., 8 (2023), 165–198. |
[13] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869. |
[14] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[15] | H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. https://doi.org/10.1186/1687-1812-2014-210 doi: 10.1186/1687-1812-2014-210 |
[16] | H. H. Alsulami, E. Karapinar, H. Piri, Fixed points of generalized $F$-Suzuki type contraction in complete $b$-metric spaces, Discrete Dyn. Nat. Soc., 2015 (2015), 969726. https://doi.org/10.1155/2015/969726 doi: 10.1155/2015/969726 |
[17] | G. Minak, A. Helvaci, I. Altun, $\acute{C}$iri$\acute{c}$ type generalized $F$-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143–1151. https://doi.org/10.2298/FIL1406143M doi: 10.2298/FIL1406143M |
[18] | D. Singh, V. Joshi, N. Singh, P. Kumam, Fixed point results for generalized $F$-contractive and Roger Hardy type $F$-contractive mappings in $G$-metric spaces, RACSAM, 111 (2017), 473–487. https://doi.org/10.1007/s13398-016-0305-3 doi: 10.1007/s13398-016-0305-3 |
[19] | H. Aydi, E. Karapinar, H. Yazidi, Modified $F$-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A |
[20] | V. Joshi, S. Jain, $G$-metric spaces: from the perspective of $F$-contractions and best proximity points, In: Metric structures and fixed point theory, 1 Ed., Chapman and Hall/CRC, 2021,103–148. |
[21] | N. Fabiano, Z. Kadelburg, N. Mirkov, V. Š. Čavić, S. Radenović, On $F$-contractions: a survey, Contemp. Math., 84 (2022), 327–342. https://doi.org/10.37256/cm.3320221517 doi: 10.37256/cm.3320221517 |
[22] | E. Karapınar, E. Fulga, A hybrid contraction that involves Jaggi type, Symmetry, 11 (2019), 715. https://doi.org/10.3390/sym11050715 doi: 10.3390/sym11050715 |
[23] | M. Noorwali, S. S. Yeşilkaya, On Jaggi-Suzuki-type hybrid contraction mappings, J. Funct. Spaces, 2021 (2021), 6721296. https://doi.org/10.1155/2021/6721296 doi: 10.1155/2021/6721296 |
[24] | J. A. Jiddah, S. S. Mohammed, M. Noorwali, S. Kanwal, H. Aydi, M. De La Sen, Fixed point results of Jaggi-Suzuki-type hybrid contractions with applications, J. Inequal. Appl., 2023 (2023), 46. https://doi.org/10.1186/s13660-023-02947-9 doi: 10.1186/s13660-023-02947-9 |
[25] | Z. Mustafa, A new structure for generalized metric spaces: with applications to fixed point theory, Ph.D. Thesis, University of Newcastle, 2005. |
[26] | T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317. https://doi.org/10.1016/j.na.2009.04.017 doi: 10.1016/j.na.2009.04.017 |
[27] | W. Shatanawi, Fixed point theory for contractive mappings satisfying $\Phi$-maps in $G$-metric spaces, Fixed Point Theory Appl., 2010 (2010), 181650. https://doi.org/10.1155/2010/181650 doi: 10.1155/2010/181650 |
[28] | M. A. Alghamdi, E. Karapinar, $(G-\beta-\psi)$-contractive type mappings in $G$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 123. https://doi.org/10.1186/1687-1812-2013-123 doi: 10.1186/1687-1812-2013-123 |
[29] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[30] | F. M. Azmi, Generalized contraction mappings in double controlled metric type space and related fixed point theorems, J. Inequal. Appl., 2023 (2023), 87. https://doi.org/10.1186/s13660-023-02999-x doi: 10.1186/s13660-023-02999-x |
[31] | M. Younis, D. Singh, S. Radenovi$\acute{c}$, M. Imdad, Convergence theorems for generalized contractions and applications, Filomat, 34 (2020), 945–964. https://doi.org/10.2298/FIL2003945Y doi: 10.2298/FIL2003945Y |