Research article

Solving the system of nonlinear integral equations via rational contractions

  • Received: 22 October 2020 Accepted: 11 January 2021 Published: 21 January 2021
  • MSC : 54H25

  • In this paper, some coupled coincidence point theorems for two mappings established using rational type contractions in the setting of partially ordered $ \mathscr{G}- $metric spaces. Moreover, supporting examples are provided to strengthen our obtained results. By considering $ \mathscr{G}- $metric space, we propose a fairly simple solution for a system of nonlinear integral equations by using fixed point technique.

    Citation: Kumara Swamy Kalla, Sumati Kumari Panda, Thabet Abdeljawad, Aiman Mukheimer. Solving the system of nonlinear integral equations via rational contractions[J]. AIMS Mathematics, 2021, 6(4): 3562-3582. doi: 10.3934/math.2021212

    Related Papers:

  • In this paper, some coupled coincidence point theorems for two mappings established using rational type contractions in the setting of partially ordered $ \mathscr{G}- $metric spaces. Moreover, supporting examples are provided to strengthen our obtained results. By considering $ \mathscr{G}- $metric space, we propose a fairly simple solution for a system of nonlinear integral equations by using fixed point technique.



    加载中


    [1] M. Abbas, W. Sintunavarat, P. Kumam, Coupled fixed point of generalized contractive mappings on partially orderedG-metric spaces, Fixed Point Theory Appl., 2012 (2012), 31. doi: 10.1186/1687-1812-2012-31
    [2] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017
    [3] S. Chandok, W. Sintunavarat, P. Kumam, Some coupled common fixed points for pair of mappings in partially ordered G-metric spaces, Math. Sci., 7 (2013), 14. doi: 10.1186/2251-7456-7-14
    [4] K. Charkrabarti, Coupled fixed point theorems with rational type contractive condition in a partially ordered G-metric space, J. Math., 2014 (2014), 785357.
    [5] V. S. Chouhan, R. Sharma, Coupled ixed point Theorems for rational contractions in partially ordered G-metric spaces, Int. J. Math. Sci. Appl., 6 (2016), 743–754.
    [6] B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modell., 54 (2011), 73–79. doi: 10.1016/j.mcm.2011.01.036
    [7] H. S. Ding, L. Li, Coupled fixed point theorems in partially ordered cone metric spaces, Filomat 25 (2011), 137–149.
    [8] E. Karapinar, A. Ravi Paul, Further Remarks on G-metric spaces, Fixed Point Theory Appl., 154 (2013), 1–19.
    [9] E. Karpinar, P. Kumam, I. M. Erhan, Coupled ixed point theorems on partially ordered G-metric spaces, Fixed Point Thory Appl., 2012 (2012), 174. doi: 10.1186/1687-1812-2012-174
    [10] E. Karapinar, N. V. Luong, N. X. Thuan, T. T. Hai, Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab. J. Math., 1 (2012), 329–339. doi: 10.1007/s40065-012-0027-0
    [11] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinearcontractions in partially ordered metric spaces, Nonlinear Anl., 70 (2009), 4341–4349. doi: 10.1016/j.na.2008.09.020
    [12] G. Meenakshi, A. Madhu, C. Renu, Common Fixed Point Results in G-metric spaces and Applications, Int. J. Comput. Appl., 43 (2012), 38–42.
    [13] Z. Mustafa, Some new common fixed point theorems under strict contractive conditions in G-metric spaces, J. Appl. Math., (2012), 248397.
    [14] Z. Mustafa, H. Obiedat, A fixed point theorem of Reich in G-Metric Spaces, CUBO A Math. J., 12 (2010), 83–93.
    [15] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-Metric Spaces, Fixed Point Theory Appl., (2008), 189870.
    [16] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of Fixed Point Results in G-Metric Spaces, Int. J. Math. Math. Sci., (2009), 283028.
    [17] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [18] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, Paperpresented at the international conference on fixed point theory and applications, Valencia Spain, 2004,189–198.
    [19] H. K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., 1 (2012), 1–13.
    [20] T. Abdeljawad, E. Karapınar, S. K. Panda, N, Mlaiki, Solutions of boundary value problems on extended-Branciari b-distance, J. Inequalities Appl., 2020 (2020), 103. doi: 10.1186/s13660-020-02373-1
    [21] C. Ravichandran, S. K. Panda, K. S. Nisar, K. Logeswari, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020), 110012. doi: 10.1016/j.chaos.2020.110012
    [22] S. K. Panda, E. Karapınar, A. Atangana, A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocatedextendedb-metricspace, Alexandria Eng. J., 59 (2020), 815–827. doi: 10.1016/j.aej.2020.02.007
    [23] S. K. Panda, T. Abdeljawad, C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and $L^{p}$-Fredholm integral equations, Alexandria Eng. J., 59 (2020), 1959–1970. doi: 10.1016/j.aej.2019.12.027
    [24] S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2, Res. Phys., 19 (2020), 103433.
    [25] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos, Solitons Fractals, 130 (2020), 109439. doi: 10.1016/j.chaos.2019.109439
    [26] S. K. Panda, A. Tassaddiq, R. P. Agarwal, A new approach to the solution of non-linear integral equations via various $F_{Be}$-contractions, Symmetry, 11 (2019), 206. doi: 10.3390/sym11020206
    [27] T. Abdeljawad, R. P. Agarwal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686
    [28] S. K. Panda, O. Alqahtani, E. Karapınar, Some fixed-point theorems in b-dislocated metric space and applications, Symmetry, 10 (2018), 691. doi: 10.3390/sym10120691
    [29] V. Vijayakumar, U. Ramalingam, S. K. Panda, K. S. Nisar, Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities, Numer. Methods Partial Differ. Equations, (2020), 22690.
    [30] V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Methods Partial Differ. Equations, (2020), 22573.
    [31] S. K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos, Solitons Fractals, (2020), 110390.
    [32] M. Asif, I. Khana, N. Haidera, Q. Al-Mdallalb, Legendre multi-wavelets collocation method for numerical solution of linear and nonlinear integral equations, Alexandria Eng. J., 59 (2020), 5099–5109. doi: 10.1016/j.aej.2020.09.040
    [33] A. Babakhani, Q. Al-Mdallal, On the existence of positive solutions for a non-autonomous fractional differential equation with integral boundary conditions, Comput. Methods Differ. Equations, (2020).
    [34] Q. M. Al-Mdallal, Monotone iterative sequences for nonlinear integro-differential equations of second order, Nonlinear Anal.: Real World Appl., 12 (2011), 3665–3673. doi: 10.1016/j.nonrwa.2011.06.023
    [35] Q. M. Al-Mdallal, Boundary value problems for nonlinear fractional integro-differential equations: theoretical and numerical results, Adv. Differ. Equations, 2012 (2012), 18. doi: 10.1186/1687-1847-2012-18
    [36] M. I. Syam, Q. M. Al-Mdallal, M. N. Anwar, An efficient numerical algorithm for solving fractional higher-order nonlinear integrodifferential equations, Abstr. Appl. Anal., 2015 (2015), 616438.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2449) PDF downloads(172) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog