This manuscript was originally built to establish some coupled common fixed point results for rational contractive mapping in the framework of $ b $-metric spaces. Thereafter, the existence and uniqueness of the boundary value problem for a singular coupled fractional differential equation of order $ \nu $ via coupled fixed point techniques are discussed. At the last, some supportive examples to illustrate the theoretical results are presented.
Citation: Hasanen A. Hammad, Watcharaporn Chaolamjiak. Solving singular coupled fractional differential equations with integral boundary constraints by coupled fixed point methodology[J]. AIMS Mathematics, 2021, 6(12): 13370-13391. doi: 10.3934/math.2021774
This manuscript was originally built to establish some coupled common fixed point results for rational contractive mapping in the framework of $ b $-metric spaces. Thereafter, the existence and uniqueness of the boundary value problem for a singular coupled fractional differential equation of order $ \nu $ via coupled fixed point techniques are discussed. At the last, some supportive examples to illustrate the theoretical results are presented.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[3] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach, 1993. |
[4] | R. P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dynam. Cont. Dis. Ser. A, 18 (2011), 457–470. |
[5] | B. Ahmad, R. P. Agarwal, On nonlocal fractional boundary value problems, Dynam. Cont. Dis. Ser. A, 18 (2011), 535–544. |
[6] | C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. doi: 10.1016/j.jmaa.2011.05.082 |
[7] | H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complixty, 2021 (2021), 5730853. |
[8] | M. Cichoń, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper., 11 (2020), 1869–1895. doi: 10.1007/s11868-020-00345-z |
[9] | E. Girejko, D. Mozyrska, M. Wyrwas, A sufficient condition of viability for fractional differential equations with the Caputo derivative, J. Math. Anal. Appl., 381 (2011), 146–154. doi: 10.1016/j.jmaa.2011.04.004 |
[10] | H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Mathematics, 6 (2020), 2330–2343. |
[11] | S. K. Ntouyas, G. Wang, L. Zhang, Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments, Opusc. Math., 31 (2011), 433–442. doi: 10.7494/OpMath.2011.31.3.433 |
[12] | H. A. H. Salem, On functions without pseudo derivatives having fractional pseudo derivatives, Quaest. Math., 42 (2019), 1237–1252. doi: 10.2989/16073606.2018.1523247 |
[13] | H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. doi: 10.1186/s13662-021-03255-6 |
[14] | M. Benchohra, J. J. Nieto, Ouahab, Second-order boundary value problem with integral boundary conditions, Bound. Value Probl., 2011 (2011), 260309. |
[15] | M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 720702. doi: 10.1186/1687-2770-2011-720702 |
[16] | T. Jankowski, Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions, Nonlinear Anal. Theor., 73 (2020), 1289–1299. |
[17] | H. A. H. Salem, Fractional order boundary value problem with integral boundary conditions involving Pettis integral, Acta Math. Sci., 31 (2011), 661–672. doi: 10.1016/S0252-9602(11)60266-X |
[18] | V. Todorčević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys., 9 (2019), 1211–1225. doi: 10.1007/s13324-019-00308-8 |
[19] | V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer International Publishing, 2019. |
[20] | G. Wang, Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments, J. Comput. Appl. Math., 234 (2010), 1356–1363. doi: 10.1016/j.cam.2010.01.009 |
[21] | H. A. Hammad, M. De la Sen, A Solution of Fredholm integral equation by using cyclic $\eta _{s}^{q}-$rational contractive mappings technique in $b$-metric-like spaces, Symmetry, 11 (2019), 1184. doi: 10.3390/sym11091184 |
[22] | H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed point of cyclic $\alpha _{L}^{\psi }$-rational contraction mappings in metric-like spaces, B. Braz. Math. Soc., 51 (2020), 81–105. doi: 10.1007/s00574-019-00144-1 |
[23] | G. Wang, G. Song, L. Zhang, Integral boundary value problems for first order integro-differential equations with deviating arguments, J. Comput. Appl. Math., 225 (2009), 602–611. doi: 10.1016/j.cam.2008.08.030 |
[24] | X. Zhang, M. Feng, W. Ge, Existence result of second-order differential equations with integral boundary conditions at resonance, J. Math. Anal. Appl., 353 (2009), 311–319. doi: 10.1016/j.jmaa.2008.11.082 |
[25] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[26] | T. Abdeljawad, R. P. Agrawal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended $b$-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686 |
[27] | B. Alqahtani, H. Aydi, E. Karapınar, V. Rakočević, A solution for Volterra fractional integral equations by hybrid contractions, Mathematics, 7 (2019), 694. doi: 10.3390/math7080694 |
[28] | N. Fabiano, N. Nikolič, S. Thenmozhi, S. Radenović, N. Cĭtaković, Tenth order boundary value problem solution existence by fixed point theorem, J. Inequal. Appl., 2020 (2020), 166. doi: 10.1186/s13660-020-02429-2 |
[29] | E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 421. doi: 10.1186/s13662-019-2354-3 |
[30] | D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. Theor., 11 (1987), 623–632. doi: 10.1016/0362-546X(87)90077-0 |
[31] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017 |
[32] | E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656–3668. doi: 10.1016/j.camwa.2010.03.062 |
[33] | V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. Theor., 74 (2011), 983–992. doi: 10.1016/j.na.2010.09.055 |
[34] | H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. doi: 10.3390/math7070634 |
[35] | H. A. Hammad, D. M. Albaqeri, R. A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc., 28 (2020), 8. doi: 10.1186/s42787-019-0064-3 |
[36] | B. S. Choudhury, K. Kundu, Two coupled weak contraction theorems in partially ordered metric spaces, RACSAM Rev. R. Acad. A, 108 (2014), 335–351. |
[37] | Y. J. Cho, Z. Kadelburg, R. Saadati, W. Shatanawi, Coupled fixed point theorems under weak contractions, Discrete Dyn. Nat. Soc., 2012 (2012), 184534. |
[38] | Y. Dzhabarova, S. Kabaivanov, M. Ruseva, B. Zlatanov, Existence, uniqueness and stability of market equilibrium on oligopoly markets, Adm. Sci., 10 (2020), 70. doi: 10.3390/admsci10030070 |
[39] | S. Kabaivanov, B. Zlatanov, A variational principle, coupled fixed points and market equilibrium, Nonlinear Anal. Model., 26 (2021), 169–185. doi: 10.15388/namc.2021.26.21413 |
[40] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$- metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1993), 263–276. |
[41] | M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. U. Babes-Bol. Mat., 3 (2009), 3–14. |
[42] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor. 65 (2006), 1379–1393. |
[43] | Y. He, Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditions, Adv. Differ. Equ., 2016 (2016), 31. doi: 10.1186/s13662-015-0729-7 |
[44] | Z. Bai, T. Qiu, Existence of positive solutions for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. |