In the present paper, a Lie-group integrator, based on $ GL(4, \mathbb{R}) $ has been newly constructed to consider the flow characteristics in an electrically conducting second grade fluid over a stretching sheet. Present method which have a very fast convergence, permits us to explore some missing initial values at the left-end. Accurate initial values can be achieved when the determined target equation is valid, and then we can apply the group preserving scheme (GPS) as a geometric approach to obtain a rather accurate numerical solution. Finally, effects of magnetic parameter, viscoelastic parameter, stagnation point flow and stretching of the sheet parameters are illustrated.
Citation: Mir Sajjad Hashemi, Hadi Rezazadeh, Hassan Almusawa, Hijaz Ahmad. A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet[J]. AIMS Mathematics, 2021, 6(12): 13392-13406. doi: 10.3934/math.2021775
In the present paper, a Lie-group integrator, based on $ GL(4, \mathbb{R}) $ has been newly constructed to consider the flow characteristics in an electrically conducting second grade fluid over a stretching sheet. Present method which have a very fast convergence, permits us to explore some missing initial values at the left-end. Accurate initial values can be achieved when the determined target equation is valid, and then we can apply the group preserving scheme (GPS) as a geometric approach to obtain a rather accurate numerical solution. Finally, effects of magnetic parameter, viscoelastic parameter, stagnation point flow and stretching of the sheet parameters are illustrated.
[1] | K. Hiemenz, Boundary Layer for a homogeneous flow around a dropping cylinder, Dinglers Polytech. J., 326 (1911), 215-220. |
[2] | K. Gersten, H. Papenfuss, J. Gross, Influence of the Prandtl number on second-order heat transfer due to surface curvature at a three dimensional stagnation point, Int. J. Heat. Mass Transfer, 21 (1978), 275-284. |
[3] | S. Liao, A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate, J. Fluid Mech., 385 (1999), 101-128. |
[4] | R. Van Gorder, K. Vajravelu, I. Pop, Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet, Meccanica, 47 (2012), 31-50. |
[5] | K. Vajravelu, D. Rollins, Hydromagnetic flow of a second grade fluid over a stretching sheet, Appl. Math. Comput., 148 (2004), 783-791. |
[6] | T. Mahapatra, A. Gupta, Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mech., 152 (2001), 191-196. |
[7] | R. Van Gorder, K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, Mech. Res. Commun., 37 (2010), 113-118. |
[8] | M. Hashemi, A novel simple algorithm for solving the magneto-hemodynamic flow in a semi-porous channel, Eur. J. Mech.-B/Fluids, 65 (2017), 359-367. |
[9] | M. Hashemi, Constructing a new geometric numerical integration method to the nonlinear heat transfer equations, Commun. Nonlinear. Sci. Numer. Simul., 22 (2015), 990-1001. |
[10] | M. Hajiketabi, S. Abbasbandy, F. Casas, The lie-group method based on radial basis functions for solving nonlinear high dimensional generalized benjamin-bona-mahony-burgers equation in arbitrary domains, Appl. Math. Comput., 321 (2018), 223-243. |
[11] | P. Bader, S. Blanes, F. Casas, N. Kopylov, E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919. |
[12] | H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021), 104666. |
[13] | H. Almusawa, R. Ghanam, G. Thompson, Classification of symmetry lie algebras of the canonical geodesic equations of five-dimensional solvable lie algebras, Symmetry, 11 (2019), 1354. |
[14] | H. Almusawa, R. Ghanam, G. Thompson, Lie symmetries of the canonical connection: Codimension one abelian nilradical case, J. Nonlinear Math. Phys., 28 (2021), 242-253. |
[15] | A. Akbulut, H. Almusawa, M. Kaplan, M. S. Osman, On the conservation laws and exact solutions to the (3+ 1)-dimensional modified kdv-zakharov-kuznetsov equation, Symmetry, 13 (2021), 765. |
[16] | M. Hashemi, S. Abbasbandy, A geometric approach for solving troesch's problem, Bull. Malays. Math. Sci. Soc., 40 (2017), 97-116. |
[17] | S. Boulaaras, M. Haiour, The theta time scheme combined with a finite-element spatial approximation in the evolutionary hamilton-jacobi-bellman equation with linear source terms, Comput. Math. model., 25 (2014), 423-438. |
[18] | M. S. Hashemi, E. Darvishi, D. Baleanu, A geometric approach for solving the density-dependent diffusion nagumo equation, Adv. Differ. Equ., 2016 (2016), 1-13. |
[19] | S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled lam{é} system with viscoelastic term and logarithmic source terms, Appl. Anal., 100 (2021), 1514-1532. |
[20] | I. Ahmad, H. Ahmad, M. Inc, H. Rezazadeh, M. A. Akbar, M. M. Khater, et al., Solution of fractional-order korteweg-de vries and burgers' equations utilizing local meshless method, J. Ocean Eng. Sci., in press. |
[21] | A. Yokus, H. Durur, H. Ahmad, P. Thounthong, Y. F. Zhang, Construction of exact traveling wave solutions of the bogoyavlenskii equation by ($g'/g, 1/g$)-expansion and ($1/g'$)-expansion techniques, Results Phys., 19 (2020), 103409. |
[22] | A. Akgül, M. Hashemi, M. Inc, S. Raheem, Constructing two powerful methods to solve the Thomas-Fermi equation, Nonlinear Dyn., 87 (2017), 1435-1444. |
[23] | M. Inc, H. Rezazadeh, J. Vahidi, M. Eslami, M. A. Akinlar, M. N. Ali, et al., New solitary wave solutions for the conformable klein-gordon equation with quantic nonlinearity, AIMS Math., 5 (2020), 6972-6984. |
[24] | S. Boulaaras, M. Haiour, The finite element approximation of evolutionary hamilton-jacobi-bellman equations with nonlinear source terms, Indagat. Math., 24 (2013), 161-173. |
[25] | A. Yokus, H. Durur, H. Ahmad, Hyperbolic type solutions for the couple boiti-leon-pempinelli system, Facta Univ., Ser.: Math. Inform., 35 (2020), 523-531. |
[26] | S. Kumar, H. Almusawa, S. K. Dhiman, M. Osman, A. Kumar, A study of Bogoyavlenskii's (2+ 1)-dimensional breaking soliton equation: Lie symmetry, dynamical behaviors and closed-form solutions, Results Phys., 29 (2021), 104793. |
[27] | S. Kumar, H. Almusawa, A. Kumar, Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rddym equation using the lie symmetry approach, Results Phys., 24 (2021), 104201. |
[28] | L. Akinyemi, M. Şenol, M. Mirzazadeh, M. Eslami, Optical solitons for weakly nonlocal schrödinger equation with parabolic law nonlinearity and external potential, Optik, 230 (2021), 166281. |
[29] | A. Yokus, H. Durur, H. Ahmad, S. W. Yao, Construction of different types analytic solutions for the zhiber-shabat equation, Mathematics, 8 (2020), 908. |
[30] | M. Senol, L. Akinyemi, A. Ata, O. S. Iyiola, Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation, Int. J. Modern Phys. B, 35 (2021), 2150021. |
[31] | L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. Khater, A. Jhangeer, et al., Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411. |
[32] | M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. Khater, et al., Soliton solutions to the boussinesq equation through sine-gordon method and kudryashov method, Results Phys., 25 (2021), 104228. |
[33] | M. S. Hashemi, D. Baleanu, Lie symmetry analysis of fractional differential equations, CRC Press, 2020. |
[34] | T. R. Mahapatra, S. Nandy, A. Gupta, Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface, Int. J. Nonlinear Mech., 44 (2009), 124-129. |