Research article

Bounds of a unified integral operator for (s,m)-convex functions and their consequences

  • Received: 25 January 2020 Accepted: 18 June 2020 Published: 28 June 2020
  • MSC : 26D10, 31A10, 26A33

  • The unified integral operator presented in Definition 4 produces several kinds of known fractional and conformable integral operators. The goal of this paper is to obtain bounds of this unified integral operator by using the definition of (s, m)-convexity. The resulting inequalities in specific cases represent the bounds of many known fractional and conformable fractional integral operators in a compact form.

    Citation: Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen. Bounds of a unified integral operator for (s,m)-convex functions and their consequences[J]. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353

    Related Papers:

  • The unified integral operator presented in Definition 4 produces several kinds of known fractional and conformable integral operators. The goal of this paper is to obtain bounds of this unified integral operator by using the definition of (s, m)-convexity. The resulting inequalities in specific cases represent the bounds of many known fractional and conformable fractional integral operators in a compact form.


    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, New York-London, 2006.
    [2] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [3] S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Inform. Math. Sci., 6 (2014), 93-107.
    [4] M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
    [5] S. G. Farid, A unified integral operator and its consequences, Open J. Math. Anal., 4 (2020), 1-7. doi: 10.30538/psrp-oma2020.0047
    [6] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018
    [7] S. S. Dragomir, Inequalities of Jensens type for generalized k-g-fractional integrals of functions for which the composite fg-1 is convex, Fract. Differ. Calc., 1 (2018), 127-150.
    [8] S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized kfractional conformable integrals, J. Inequal. Spec. Funct., 9 (2018), 53-65.
    [9] F. Jarad, E. Ugurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247.
    [10] T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018
    [11] S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math., 7 (2012), 89-94.
    [12] T. R. Parbhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [13] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
    [14] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Fract. Calc. Appl., 3 (2012), 1-13. doi: 10.1142/9789814355216_0001
    [15] M. Z. Sarikaya, M. Dahmani, M. E. Kiris, et al. (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.
    [16] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
    [17] T. Tunc, H. Budak, F. Usta, et al. On new generalized fractional integral operators and related fractional inequalities, ResearchGate, 2017. Available from: https://www.researchgate.net/publication/313650587.
    [18] Y. C. Kwun, G. Farid, S. Ullah, et al. Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283-126292. doi: 10.1109/ACCESS.2019.2939166
    [19] N. Eftekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Inequal., 8 (2014), 489-495.
    [20] Y. C. Kwun, G. Farid, S. M. Kang, et al. Derivation of bounds of several kinds ofoperators via (s, m)-convexity, Adv. Differ. Equ., 2020 (2020), 1-14. doi: 10.1186/s13662-019-2438-0
    [21] G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.
    [22] L. Chen, G. Farid, S. I. Butt, et al. Boundedness of fractional integral operators containing MittagLeffler functions, Turkish J. Inequal., 4 (2020), 14-24.
    [23] G. Farid, Estimation of Riemann-Liouville k-fractional integrals via convex functions, Acta et Commentat. Univ. Tartuensis de Math., 23 (2019), 71-78.
    [24] G. Farid, Some Riemann-Liouville fractional integral for inequalities for convex functions, J. Anal., 27 (2019), 1095-1102. doi: 10.1007/s41478-018-0079-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3714) PDF downloads(247) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog