Citation: Duygu Dönmez Demir, Gülsüm Şanal. Perturbed trapezoid inequalities for n th order differentiable convex functions and their applications[J]. AIMS Mathematics, 2020, 5(6): 5495-5509. doi: 10.3934/math.2020352
[1] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[2] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[3] | Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529 |
[4] | Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465 |
[5] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[6] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
[7] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
[8] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393 |
[10] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
Many researchers present a large number of studies to improve and generalize classical Hermite-Hadamard inequality. This double inequality suggests that the mean value of a continuous convex function g:[a,b]⊆R→R lies between the value of g in the midpoint of the interval [a,b] and the arithmetic mean of the values of g at the endpoints of this interval such that
g(a+b2)≤1b−a∫bag(x)dx≤g(a)+g(b)2. | (1.1) |
In addition, each side of the mentioned inequality characterizes convexity in the sense that a real-valued continuous function g defined on an interval I is convex if its restriction to each compact subinterval [a,b]⊂I hold both inequalities. If g is a concave function, then the inequality is interchanged 1.2 [3,23]. In the literature, Hermite-Hadamard inequality is frequently preferred because of its importance in nonlinear analysis. Recently, Jain et al. [10] established some new inequalities related to Hermite-Hadamard inequality for the functions whose absolute values of second derivatives are log−convex. Mehrez and Agarwal [13] introduced new Hermit-Hadamard type integral inequalities for convex functions. Mo-hammed [16] presented some new Hermite-Hadamard inequalities for MT−convex functions. Besides, some new integral inequalities for the logarithmically p−preinvex functions via generalized beta function were established by Mohammed [17].
Many authors introduced a large number of studies to generalize various integral inequalities. Cerone et al. [4] presented the generalized trapezoid inequality. Ujević [27] derived some new perturbations of the trapezoid inequality. Drogomir et al. [6] improved quasi-trapezoid quadrature formula by using some well-known classical inequalities. Cerone [5] obtained explicit bounds for perturbed trapezoidal rules. Liu and Park [11] suggested some perturbed versions of generalized trapezoid inequality. On the other hand, some integral inequalities for the convex functions have been frequently investigated by many researchers. Sarikaya and Aktan [24] intoduced the generalization of some integral inequalities for convex functions. Tunç and Şanal [26] established some perturbed trapezoid inequalities for twice differentiable convex, s−convex and tgs−convex functions. Ardıc [1] presented some integral inequalities such as Hölder, Hermite-Hadamard and Jensen integral inequality for n times differentiable convex functions.
The studies in recent years have focused on the fractional integral inequalities for convex functions. Agarwal et al. [2] established some fractional integral inequalities via new Pólya-Szegö type integral inequalities. Fernandez and Mohammed [9] used the fractional integrals to obtain the Hermite-Hadamard inequality and related results. Mohammed [15] introduced some new integral inequalities by using the (k,h), (k,s) -Riemann Liouville fractional integrals. The author presented new Hermite-Hadamard's type inequalities for Riemann Liouville fractional integrals of convex function [18]. Besides, Hermite-Hadamard's type inequalities have been obtained via the fractional integrals for different type convex functions [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].
The main aim of the present study is to obtain some new inequalities related to general perturbed trapezoid inequality. The considered classes of functions consist of the functions whose n th derivatives of absolute values are convex.
Definition 1. [14] A function g:I⊂R→R is said to be convex on I if inequality
g(ta+(1−t)b)≤tg(a)+(1−t)g(b) | (1.2) |
holds for all a,b∈I and t∈[0,1]. We say that g is concave if (−g) is convex. For numerical integration, the trapezoid inequality is introduced as
|∫bag(x)dx−12(b−a)(g(a)+g(b))|≤112M2(b−a)3 | (1.3) |
where g:[a,b]→R is supposed to be twice differentiable on the interval (a,b), with the second derivative bounded on (a,b) by M2=supx∈(a,b)|g′′(x)|<+∞
([5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]).
Theorem 1. Grüss inequality : Let g and z to be two functions defined and integrable on [a,b]. If k≤g(x)≤l and m≤z(x)≤n is to be ∀x∈[a,b] and for constants k,l,m,n∈R, then
|1b−a∫bag(x)z(x)dx−1b−a∫bag(x)dx1b−a∫baz(x)dx|≤14(l−k)(n−m). | (1.4) |
The above inequality is held where 14 is the best constant [7]. For the perturbed trapezoid inequality, the inequality obtained by the application of the Grüss inequality is given as
|∫bag(x)dx−12(b−a)(g(a)+g(b))+112(b−a)2(g′(b)−g′(a))|≤132(Γ2−γ2)(b−a)3 | (1.5) |
by Dragomir et al. [6] where g is supposed to be twice differentiable on the interval (a,b) with the second derivative bounded on (a,b) by Γ2=supx∈(a,b)g′′(x)<+∞ and γ2=infx∈(a,b)g′′(x)>−∞.
In the light of this information, we establish some inequalities for n th order differentiable convex functions.
Lemma 1. [26] Let g :I⊆R→R be a differentiable mapping on I∘, a,b∈I∘ with a<b. If g′′∈L[a,b], then one obtains
∫bag(x)dx−12(b−a)(g(a)+g(b))+54(b−a)2(g′(b)−g′(a))=(b−a)34∫10(t+1)2[g′′(ta+(1−t)b)+g′′(tb+(1−t)a)]dt. | (1.6) |
Theorem 2. [12] Minkowski Inequality: Let gp, zp and (g+z)p be integrable functions on [a,b]. If p>1, then
[∫ba|g(x)+z(x)|pdx]1p≤[∫ba|g(x)|pdx]1p+[∫ba|z(x)|pdx]1p. | (1.7) |
Similarly, if p>1 and ak, bk>0, then Minkowski sum inequality is expressed as
[n∑k=1|ak+bk|p]1p≤[n∑k=1|ak|p]1p+[n∑k=1|bk|p]1p. | (1.8) |
If the sequences a1, a2, ... and b1, b2, ... are proportional, the inequality is provided. We will use the following notations and conventions throughout this article. Let us consider as I=[0,∞)⊂R=(−∞,+∞) and a,b∈I with 0<a<b and g(n)∈L[a,b] and
A(a,b)=a+b2,G(a,b)=√ab,H(a,b)=2aba+b,L(a,b)=b−alnb−lna,a≠b,Lp(a,b),Lp=Lp(a,b)={a,a=b[bp+1−ap+1(p+1)(b−a)]1p,a≠ba,b≥0 |
are the arithmetic mean, geometric mean, harmonic mean, logarithmic mean, generalized p-logarithmic mean for a,b>0, respectively [8].
In this study, we introduce some results related to the perturbed trapezoid inequality and prove some applications for special means of real numbers.
Lemma 2. Let g:I∘⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b where n is even number. If g(n)∈L[a,b], then the following equality is obtained:
1b−aa∫bg(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×(g(n−4)(a)+g(n−4)(b))+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]=(b−a)n2.n!.an×1∫0(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt | (2.1) |
Proof. If the right-hand side of the equality is considered and the integration by parts is applied, then one obtains
I1=1∫0(antn+⋯+a1t+a0)g(n)(ta+(1−t)b)dt=(antn+⋯+a1t+a0)g(n−1)(ta+(1−t)b)a−b|10−1(a−b)1∫0(n.antn−1+⋯+2a2t+a1)g(n−1)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−1(a−b)1∫0(n.antn−1+⋯+2a2t+a1)g(n−1)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−n.an+⋯+2a2+a1(a−b)2g(n−2)(a)+a1(a−b)2g(n−2)(b)+1(a−b)2×1∫0(n.(n−1).antn−2+⋯+3.2.a3t+2.a2)×g(n−2)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−n.an+⋯+2a2+a1(a−b)2g(n−2)(a)+a1(a−b)2g(n−2)(b)+n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2(a−b)3g(n−3)(a)−2.a2(a−b)3g(n−3)(b)−n.(n−1).(n−2).an+⋯+3.2.1.a3(a−b)4g(n−4)(a)+3.2.a3(a−b)4g(n−4)(b)+⋯−n!.an+(n−1)!.an−1(a−b)ng(a)+(n−1)!.an−1(a−b)ng(b)+n!an(a−b)n1∫0g(ta+(1−t)b)dt |
I2=∫10(antn+⋯+a1t+a0)g(n)(tb+(1−t)a)dt=(antn+⋯+a1t+a0)g(n−1)(tb+(1−t)a)b−a|10−1(b−a)∫10(n.antn−1+⋯+2a2t+a1)g(n−1)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−1(b−a)∫10(n.antn−1+⋯+2a2t+a1)g(n−1)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−n.an+⋯+2a2+a1(b−a)2g(n−2)(b)+a1(b−a)2g(n−2)(a)+1(b−a)2∫10[n.(n−1)antn−2+⋯+3.2.a3t+2.a2]×g(n−2)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−n.an+⋯+2a2+a1(b−a)2g(n−2)(b)+a1(b−a)2g(n−2)(a)+n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2(b−a)3g(n−3)(b)−2.a2(b−a)3g(n−3)(a)−n.(n−1).(n−2).an+⋯+3.2.a3(b−a)4g(n−4)(b)+3.2.a3(b−a)4g(n−4)(a)+⋯−n!.an+(n−1)!.an−1(b−a)ng(b)+(n−1)!.an−1(b−a)ng(a)+n!an(b−a)n∫10g(tb+(1−t)a)dt |
Summing I1 and I2, then one obtains
I1+I2=∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt=(an+⋯+a1+a0)b−a[g(n−1)(b)−g(n−1)(a)]+a0b−a[g(n−1)(b)−g(n−1)(a)]−(n.an+⋯+2a2+a1)(b−a)2[g(n−2)(a)+g(n−2)(b)]+a1(b−a)2[g(n−2)(a)+g(n−2)(b)]+(n.(n−1).an+⋯+4.3.a4+3.2a3+2.a2)(b−a)3[g(n−3)(b)−g(n−3)(a)]+2.a2(b−a)3[g(n−3)(b)−g(n−3)(a)]−(n.(n−1).(n−2)an+⋯+3.2a3)(b−a)4[g(n−4)(a)+g(n−4)(b)]+3.2.a3(b−a)4[g(n−4)(a)+g(n−4)(b)]+⋯−n!.an+(n−1)!.an−1(b−a)n[g(a)+g(b)]+(n−1)!.an−1(b−a)n[g(a)+g(b)]+(n)!.an(b−a)n[∫10[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt]=an+⋯+a1+2a0b−a[g(n−1)(b)−g(n−1)(a)]−n.an+⋯+2a2(b−a)2[g(n−2)(a)+g(n−2)(b)]+n.(n−1)an+⋯+4.3.a4+3.2.a3+4a2(b−a)3[g(n−3)(b)−g(n−3)(a)]−n.(n−1).(n−2).an+⋯+4.3.2.a4(b−a)4[g(n−4)(a)+g(n−4)(b)]+⋯−n!.an(b−a)n[g(a)+g(b)]+2.n!.an(b−a)n+1∫bag(x)dx |
so
1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an[g(n−1)(b)−g(n−1)(a)]=(b−a)n2.n!.an∫10(antn+⋯+a1t+a0)×[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt |
Thus, the proof is completed.
Remark 1. Using the change of the variable x=ta+(1−t)b where t∈[0,1], Eq.(2.1) can be written as
1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]=−(b−a)n−12.n!.an×∫10(an(x−ba−b)n+⋯+a1(x−ba−b)+a0)[g(n)(x)+g(n)(a+b−x)]dx |
Theorem 3. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b where n is even number. If |g(n)| is convex on [a,b], then the inequality in the following holds:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2.a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)n2.n!.|an|×[n∑k=0|ak|k+1]×[|g(n)(a)|+|g(n)(b)|] | (2.2) |
Proof. From Lemma 2, it is concluded that
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+...+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×{∫10|antn+⋯+a1t+a0|[|g(n)(ta+(1−t)b)|+|g(n)(tb+(1−t)a)|]dt}≤(b−a)n2.n!.|an|×{∫10|antn+⋯+a1t+a0|[t|g(n)(a)|+(1−t)|g(n)(b)|+t|g(n)(b)|+(1−t)|g(n)(a)|]dt}≤(b−a)n2.n!.|an|[|g(n)(a)|+|g(n)(b)|]×∫10[|antn|+⋯+|a1t|+|a0|]dt≤(b−a)n2.n!.|an|×n∑k=0|ak|k+1×[|g(n)(a)|+|g(n)(b)|] |
The theorem is proved.
Theorem 4. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b, and p>1 with 1/p+1/q=1 where n is even number. If the mapping |g(n)|q is convex on [a,b], then we obtain:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2.a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)nn!.|an|×[n∑k=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q | (2.3) |
Proof. Using Lemma 2, Hölder's integral inequality and Minkowsky's integral inequality, we establish
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×[∫10|antn+⋯+a1t+a0||g(n)(ta+(1−t)b)|dt+∫10|antn+⋯+a1t+a0||g(n)(tb+(1−t)a)|dt]≤(b−a)n2.n!.|an|×[(∫10|antn+⋯+a1t+a0|pdt)1p×(∫10|g(n)(ta+(1−t)b)|qdt)1q+(∫10|antn+⋯+a1t+a0|pdt)1p×(∫10|g(n)(tb+(1−t)a)|qdt)1q]≤(b−a)nn!.|an|×[n∑k=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q | (2.4) |
such that 1p+1q=1. Considering the convexity of |g(n)|q, then we find
∫10|g(n)(ta+(1−t)b)|qdt≤∫10[t|g(n)(a)|q+(1−t)|g(n)(b)|q]dt=|g(n)(a)|q+|g(n)(b)|q2∫10|g(n)(tb+(1−t)a)|qdt≤∫10[t|g(n)(b)|q+(1−t)|g(n)(a)|q]dt=|g(n)(a)|q+|g(n)(b)|q2 | (2.5) |
Using the Theorem 2, we have
(∫10|antn+⋯+a1t+a0|pdt)1p≤[∫10(antn)pdt]1p+⋯+[∫10(a1t)pdt]1p+[∫10(a0)pdt]1p=|an|(np+1)1/p+|an−1||(n−1)p+1|1/p+⋯+|a1|(p+1)1/p+|a0|=[n∑k=0|ak|(kp+1)1/p] | (2.6) |
By using (2.5) and (2.6), the inequality (2.3) is obtained.
Theorem 5. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b, and p>1such that 1/p+1/q=1 where n is even number. If the mapping |g(n)|p is convex on [a,b], then the inequality in the following holds:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)n2.n!.|an|[n∑k=0|ak|k+1]1−1p×{([n∑k=0|ak|k+2]|g(n)(a)|p+[n∑k=0|ak|(k+1)(k+2)]|g(n)(b)|p)1p+([n∑k=0|ak|k+2]|g(n)(b)|p+[n∑k=0|ak|(k+1)(k+2)]|g(n)(a)|p)1p} | (2.7) |
Proof. Using Lemma 2 and power mean integral inequality, one obtains
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×[∫10|antn+⋯+a1t+a0||g(n)(ta+(1−t)b)|dt+∫10|antn+⋯+a1t+a0||g(n)(tb+(1−t)a)|dt]≤(b−a)n2.n!.|an|(∫10|antn+⋯+a1t+a0|dt)1−1p×{(∫10|antn+⋯+a1t+a0|(t|g(n)(a)|p+(1−t)|g(n)(b)|p)dt)1p+(∫10|antn+⋯+a1t+a0|(t|g(n)(b)|p+(1−t)|gn(a)|p)dt)1p}≤(b−a)n2.n!.|an|.[n∑k=0|ak|k+1]1−1p×{([n∑k=0|ak|k+2].|g(n)(a)|p+[n∑k=0|ak|(k+1)(k+2)].|g(n)(b)|p)1p+([n∑k=0|ak|k+2].|g(n)(b)|p+[n∑k=0|ak|(k+1)(k+2)].|g(n)(a)|p)1p} |
The proof is completed.
In this section, we consider the results of Section 2 to verify the new proposed inequalities.
Proposition 1. Let a,b∈R, 0<a<b, n>2 where n is even number. Then, the inequality in the following holds:
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯+3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b2)2.2!.an+(b−a)n−1[an+⋯+2.a0](b−a)2.an|≤(b−a)n|an|×n∑k=0|ak|k+1 | (3.1) |
Proof. The proof is clearly obtained from Theorem 3 for g(x)=xn, x∈R.
Proposition 2. Let a,b∈R, 0<a<b, n>2 where n is even number. For all p>1, one obtains
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯+3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b3)2.2!.an+(b−a)n−1[an+⋯+2.a0](b−a)2.an|≤(b−a)n|an|×n∑k=0|ak|(kp+1)1/p | (3.2) |
Proof. The proof is completed from Theorem 4 applied for g(x)=xn, x∈R.
Proposition 3. Let a,b∈R, 0<a<b, n>2 where n is even number. Then, we obtain for all p>1,
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯++3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b3)2.2!.an+(b−a)n−1[an+...+2.a0](b−a)2.an|≤(b−a)n|an|×(n∑k=0|ak|k+1)1−1/p×(n∑k=0|ak|k+2+n∑k=0|ak|(k+1)(k+2))1p | (3.3) |
Proof. The proof is obtained from Theorem 5 such that g(x)=xn, x∈[a,b].
The authors declare that there is no conflict of interest.
[1] | M. A. Ardic, Inequalities via n-times differentiable convex functions, arXiv:1310.0947v1, 2013. |
[2] | P. Agarwal, J. Tarioon, S. K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequalities Appl., Article number: 122 (2016). |
[3] | M. Bessenyei, Z. Páles, Characterizations of convexity via Hadamard's inequality, Math. Ineq. Appl., 9 (2006), 53-62. |
[4] | P. Cerone, S. S. Dragomir, C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163. |
[5] | P. Cerone, On perturbed trapezoidal and midpoint rules, J. Appl. Math. Comput., 9 (2002), 423-435. |
[6] | S. S. Dragomir, P. Cerone, A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31 (2000), 475-494. |
[7] | S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33 (1997), 15-20. |
[8] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. |
[9] | A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 2020, 1-18. |
[10] | S. Jain, K. Mehrez, D. Baleanu, et al. Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 163. |
[11] | W. Liu, J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded variation, J. Comput. Anal. Appl., 22 (2017), 11-18. |
[12] | X. F. Ma, L. C. Wang, Two mapping related to Minkowski's inequalities, JIPAM, 10 (2009), 1-8. |
[13] |
K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Ivlath., 350 (2019), 274-285. doi: 10.1016/j.cam.2018.10.022
![]() |
[14] | D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993. |
[15] | P. O. Mohamed, Inequalities of -type for Riemann-Liouville fractional integrals, Appl. Ivlath. ENotes, 17 (2017), 199-206. |
[16] |
P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262. doi: 10.1016/j.jksus.2017.07.011
![]() |
[17] | P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Inter. Ivlath., 22 (2019), 539-549. |
[18] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., 2019, 1-11. |
[19] | P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Jnequal. Appl., 2018, 359. |
[20] | P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of HermiteHadamard type for convex functions, Symrretry, 11 (2019), 263. |
[21] | P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Ivlath., 372 (2020), 112740. |
[22] | P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020, 69. |
[23] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006. |
[24] |
M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modell., 54 (2011), 2175-2182. doi: 10.1016/j.mcm.2011.05.026
![]() |
[25] | M. Tomar, P. Agarwal, J. Choi, Hermite-Hadamard type inequalities for generalized convex functions on fractal sets style, Bal. Soc. Paran. Ivlat., 38 (2020), 101-116. |
[26] |
M. Tunç, G. Şanal, Some perturbed trapezoid inequalities for convex, s-convex and tgs-convex functions and applications, Tbilisi Math, J., 8 (2015), 87-102. doi: 10.1515/tmj-2015-0013
![]() |
[27] | N. Ujević, Perturbed trapezoid and mid-point inequalities and applications, Soochow J. Math., 29 (2003), 249-257. |
[28] | F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of HermiteHadamard type for (α, m)-convex functions, J. Inequal. Appl., DOI: 10.1186/s13660-019-2079-6, 2019, 135. |
1. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, Trapezium-like Inequalities Involving k-th Order Differentiable Rγ-Convex Functions and Applications, 2022, 14, 2073-8994, 448, 10.3390/sym14030448 | |
2. | Duygu Dönmez Demir, Gülsüm Şanal, On n-times differentiable strongly s-convex functions, 2023, 1, 2956-7068, 201, 10.2478/ijmce-2023-0016 | |
3. | Hasan Kara, Hüseyin Budak, Ahmet Akdemir, Some new parameterized inequalities based on Riemann-Liouville fractional integrals, 2023, 37, 0354-5180, 7867, 10.2298/FIL2323867K |