Research article

Perturbed trapezoid inequalities for n th order differentiable convex functions and their applications

  • Received: 05 February 2020 Accepted: 18 May 2020 Published: 28 June 2020
  • MSC : 39B62, 52A41

  • In this study, we introduce a new general identity for n th order differentiable functions. Also, we establish some new inequalities regarding general perturbed trapezoid inequality for the functions whose the absolute values of n th derivatives are convex. Finally, some applications for special means are provided.

    Citation: Duygu Dönmez Demir, Gülsüm Şanal. Perturbed trapezoid inequalities for n th order differentiable convex functions and their applications[J]. AIMS Mathematics, 2020, 5(6): 5495-5509. doi: 10.3934/math.2020352

    Related Papers:

    [1] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [2] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [3] Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529
    [4] Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465
    [5] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [6] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
    [7] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [8] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [9] Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
    [10] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
  • In this study, we introduce a new general identity for n th order differentiable functions. Also, we establish some new inequalities regarding general perturbed trapezoid inequality for the functions whose the absolute values of n th derivatives are convex. Finally, some applications for special means are provided.


    Many researchers present a large number of studies to improve and generalize classical Hermite-Hadamard inequality. This double inequality suggests that the mean value of a continuous convex function g:[a,b]RR lies between the value of g in the midpoint of the interval [a,b] and the arithmetic mean of the values of g at the endpoints of this interval such that

    g(a+b2)1babag(x)dxg(a)+g(b)2. (1.1)

    In addition, each side of the mentioned inequality characterizes convexity in the sense that a real-valued continuous function g defined on an interval I is convex if its restriction to each compact subinterval [a,b]I hold both inequalities. If g is a concave function, then the inequality is interchanged 1.2 [3,23]. In the literature, Hermite-Hadamard inequality is frequently preferred because of its importance in nonlinear analysis. Recently, Jain et al. [10] established some new inequalities related to Hermite-Hadamard inequality for the functions whose absolute values of second derivatives are logconvex. Mehrez and Agarwal [13] introduced new Hermit-Hadamard type integral inequalities for convex functions. Mo-hammed [16] presented some new Hermite-Hadamard inequalities for MTconvex functions. Besides, some new integral inequalities for the logarithmically ppreinvex functions via generalized beta function were established by Mohammed [17].

    Many authors introduced a large number of studies to generalize various integral inequalities. Cerone et al. [4] presented the generalized trapezoid inequality. Ujević [27] derived some new perturbations of the trapezoid inequality. Drogomir et al. [6] improved quasi-trapezoid quadrature formula by using some well-known classical inequalities. Cerone [5] obtained explicit bounds for perturbed trapezoidal rules. Liu and Park [11] suggested some perturbed versions of generalized trapezoid inequality. On the other hand, some integral inequalities for the convex functions have been frequently investigated by many researchers. Sarikaya and Aktan [24] intoduced the generalization of some integral inequalities for convex functions. Tunç and Şanal [26] established some perturbed trapezoid inequalities for twice differentiable convex, sconvex and tgsconvex functions. Ardıc [1] presented some integral inequalities such as Hölder, Hermite-Hadamard and Jensen integral inequality for n times differentiable convex functions.

    The studies in recent years have focused on the fractional integral inequalities for convex functions. Agarwal et al. [2] established some fractional integral inequalities via new Pólya-Szegö type integral inequalities. Fernandez and Mohammed [9] used the fractional integrals to obtain the Hermite-Hadamard inequality and related results. Mohammed [15] introduced some new integral inequalities by using the (k,h), (k,s) -Riemann Liouville fractional integrals. The author presented new Hermite-Hadamard's type inequalities for Riemann Liouville fractional integrals of convex function [18]. Besides, Hermite-Hadamard's type inequalities have been obtained via the fractional integrals for different type convex functions [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].

    The main aim of the present study is to obtain some new inequalities related to general perturbed trapezoid inequality. The considered classes of functions consist of the functions whose n th derivatives of absolute values are convex.

    Definition 1. [14] A function g:IRR is said to be convex on I if inequality

    g(ta+(1t)b)tg(a)+(1t)g(b) (1.2)

    holds for all a,bI and t[0,1]. We say that g is concave if (g) is convex. For numerical integration, the trapezoid inequality is introduced as

    |bag(x)dx12(ba)(g(a)+g(b))|112M2(ba)3 (1.3)

    where g:[a,b]R is supposed to be twice differentiable on the interval (a,b), with the second derivative bounded on (a,b) by M2=supx(a,b)|g(x)|<+

    ([5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]).

    Theorem 1. Grüss inequality : Let g and z to be two functions defined and integrable on [a,b]. If kg(x)l and mz(x)n is to be x[a,b] and for constants k,l,m,nR, then

    |1babag(x)z(x)dx1babag(x)dx1babaz(x)dx|14(lk)(nm). (1.4)

    The above inequality is held where 14 is the best constant [7]. For the perturbed trapezoid inequality, the inequality obtained by the application of the Grüss inequality is given as

    |bag(x)dx12(ba)(g(a)+g(b))+112(ba)2(g(b)g(a))|132(Γ2γ2)(ba)3 (1.5)

    by Dragomir et al. [6] where g is supposed to be twice differentiable on the interval (a,b) with the second derivative bounded on (a,b) by Γ2=supx(a,b)g(x)<+ and γ2=infx(a,b)g(x)>.

    In the light of this information, we establish some inequalities for n th order differentiable convex functions.

    Lemma 1. [26] Let g :IRR be a differentiable mapping on I, a,bI with a<b. If gL[a,b], then one obtains

    bag(x)dx12(ba)(g(a)+g(b))+54(ba)2(g(b)g(a))=(ba)3410(t+1)2[g(ta+(1t)b)+g(tb+(1t)a)]dt. (1.6)

    Theorem 2. [12] Minkowski Inequality: Let gp, zp and (g+z)p be integrable functions on [a,b]. If p>1, then

    [ba|g(x)+z(x)|pdx]1p[ba|g(x)|pdx]1p+[ba|z(x)|pdx]1p. (1.7)

    Similarly, if p>1 and ak, bk>0, then Minkowski sum inequality is expressed as

    [nk=1|ak+bk|p]1p[nk=1|ak|p]1p+[nk=1|bk|p]1p. (1.8)

    If the sequences a1, a2, ... and b1, b2, ... are proportional, the inequality is provided. We will use the following notations and conventions throughout this article. Let us consider as I=[0,)R=(,+) and a,bI with 0<a<b and g(n)L[a,b] and

    A(a,b)=a+b2,G(a,b)=ab,H(a,b)=2aba+b,L(a,b)=balnblna,ab,Lp(a,b),Lp=Lp(a,b)={a,a=b[bp+1ap+1(p+1)(ba)]1p,aba,b0

    are the arithmetic mean, geometric mean, harmonic mean, logarithmic mean, generalized p-logarithmic mean for a,b>0, respectively [8].

    In this study, we introduce some results related to the perturbed trapezoid inequality and prove some applications for special means of real numbers.

    Lemma 2. Let g:IRR be n times differentiable mapping on I, a,bI with a<b  where n is even number. If g(n)L[a,b], then the following equality is obtained:

    1baabg(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×(g(n4)(a)+g(n4)(b))+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]=(ba)n2.n!.an×10(antn++a1t+a0)[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt (2.1)

    Proof. If the right-hand side of the equality is considered and the integration by parts is applied, then one obtains

    I1=10(antn++a1t+a0)g(n)(ta+(1t)b)dt=(antn++a1t+a0)g(n1)(ta+(1t)b)ab|101(ab)10(n.antn1++2a2t+a1)g(n1)(ta+(1t)b)dt=(an++a1+a0)abg(n1)(a)a0abg(n1)(b)1(ab)10(n.antn1++2a2t+a1)g(n1)(ta+(1t)b)dt=(an++a1+a0)abg(n1)(a)a0abg(n1)(b)n.an++2a2+a1(ab)2g(n2)(a)+a1(ab)2g(n2)(b)+1(ab)2×10(n.(n1).antn2++3.2.a3t+2.a2)×g(n2)(ta+(1t)b)dt=(an++a1+a0)abg(n1)(a)a0abg(n1)(b)n.an++2a2+a1(ab)2g(n2)(a)+a1(ab)2g(n2)(b)+n.(n1).an++4.3.a4+3.2.a3+2.a2(ab)3g(n3)(a)2.a2(ab)3g(n3)(b)n.(n1).(n2).an++3.2.1.a3(ab)4g(n4)(a)+3.2.a3(ab)4g(n4)(b)+n!.an+(n1)!.an1(ab)ng(a)+(n1)!.an1(ab)ng(b)+n!an(ab)n10g(ta+(1t)b)dt
    I2=10(antn++a1t+a0)g(n)(tb+(1t)a)dt=(antn++a1t+a0)g(n1)(tb+(1t)a)ba|101(ba)10(n.antn1++2a2t+a1)g(n1)(tb+(1t)a)dt=(an++a1+a0)bag(n1)(b)a0bag(n1)(a)1(ba)10(n.antn1++2a2t+a1)g(n1)(tb+(1t)a)dt=(an++a1+a0)bag(n1)(b)a0bag(n1)(a)n.an++2a2+a1(ba)2g(n2)(b)+a1(ba)2g(n2)(a)+1(ba)210[n.(n1)antn2++3.2.a3t+2.a2]×g(n2)(tb+(1t)a)dt=(an++a1+a0)bag(n1)(b)a0bag(n1)(a)n.an++2a2+a1(ba)2g(n2)(b)+a1(ba)2g(n2)(a)+n.(n1).an++4.3.a4+3.2.a3+2.a2(ba)3g(n3)(b)2.a2(ba)3g(n3)(a)n.(n1).(n2).an++3.2.a3(ba)4g(n4)(b)+3.2.a3(ba)4g(n4)(a)+n!.an+(n1)!.an1(ba)ng(b)+(n1)!.an1(ba)ng(a)+n!an(ba)n10g(tb+(1t)a)dt

    Summing I1 and I2, then one obtains

    I1+I2=10(antn++a1t+a0)[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt=(an++a1+a0)ba[g(n1)(b)g(n1)(a)]+a0ba[g(n1)(b)g(n1)(a)](n.an++2a2+a1)(ba)2[g(n2)(a)+g(n2)(b)]+a1(ba)2[g(n2)(a)+g(n2)(b)]+(n.(n1).an++4.3.a4+3.2a3+2.a2)(ba)3[g(n3)(b)g(n3)(a)]+2.a2(ba)3[g(n3)(b)g(n3)(a)](n.(n1).(n2)an++3.2a3)(ba)4[g(n4)(a)+g(n4)(b)]+3.2.a3(ba)4[g(n4)(a)+g(n4)(b)]+n!.an+(n1)!.an1(ba)n[g(a)+g(b)]+(n1)!.an1(ba)n[g(a)+g(b)]+(n)!.an(ba)n[10[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt]=an++a1+2a0ba[g(n1)(b)g(n1)(a)]n.an++2a2(ba)2[g(n2)(a)+g(n2)(b)]+n.(n1)an++4.3.a4+3.2.a3+4a2(ba)3[g(n3)(b)g(n3)(a)]n.(n1).(n2).an++4.3.2.a4(ba)4[g(n4)(a)+g(n4)(b)]+n!.an(ba)n[g(a)+g(b)]+2.n!.an(ba)n+1bag(x)dx

    so

    1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+4.a2]2.n!.an[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an[g(n1)(b)g(n1)(a)]=(ba)n2.n!.an10(antn++a1t+a0)×[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt

    Thus, the proof is completed.

    Remark 1. Using the change of the variable x=ta+(1t)b where t[0,1], Eq.(2.1) can be written as

    1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+4a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]=(ba)n12.n!.an×10(an(xbab)n++a1(xbab)+a0)[g(n)(x)+g(n)(a+bx)]dx

    Theorem 3. Let g:IRR be n times differentiable mapping on I, a,bI with a<b where n is even number. If |g(n)| is convex on [a,b], then the inequality in the following holds:

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2.a0]2.n!.an×[g(n1)(b)g(n1)(a)]|(ba)n2.n!.|an|×[nk=0|ak|k+1]×[|g(n)(a)|+|g(n)(b)|] (2.2)

    Proof. From Lemma 2, it is concluded that

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an+...+a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]|=|(ba)n2.n!.an×{10(antn++a1t+a0)[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt}|(ba)n2.n!.|an|×{10|antn++a1t+a0|[|g(n)(ta+(1t)b)|+|g(n)(tb+(1t)a)|]dt}(ba)n2.n!.|an|×{10|antn++a1t+a0|[t|g(n)(a)|+(1t)|g(n)(b)|+t|g(n)(b)|+(1t)|g(n)(a)|]dt}(ba)n2.n!.|an|[|g(n)(a)|+|g(n)(b)|]×10[|antn|++|a1t|+|a0|]dt(ba)n2.n!.|an|×nk=0|ak|k+1×[|g(n)(a)|+|g(n)(b)|]

    The theorem is proved.

    Theorem 4. Let g:IRR be n times differentiable mapping on I, a,bI with a<b, and p>1 with 1/p+1/q=1 where n is even number. If the mapping |g(n)|q is convex on [a,b], then we obtain:

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2.a0]2.n!.an×[g(n1)(b)g(n1)(a)]|(ba)nn!.|an|×[nk=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q (2.3)

    Proof. Using Lemma 2, Hölder's integral inequality and Minkowsky's integral inequality, we establish

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]|=|(ba)n2.n!.an×{10(antn++a1t+a0)[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt}|(ba)n2.n!.|an|×[10|antn++a1t+a0||g(n)(ta+(1t)b)|dt+10|antn++a1t+a0||g(n)(tb+(1t)a)|dt](ba)n2.n!.|an|×[(10|antn++a1t+a0|pdt)1p×(10|g(n)(ta+(1t)b)|qdt)1q+(10|antn++a1t+a0|pdt)1p×(10|g(n)(tb+(1t)a)|qdt)1q](ba)nn!.|an|×[nk=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q (2.4)

    such that 1p+1q=1. Considering the convexity of |g(n)|q, then we find

    10|g(n)(ta+(1t)b)|qdt10[t|g(n)(a)|q+(1t)|g(n)(b)|q]dt=|g(n)(a)|q+|g(n)(b)|q210|g(n)(tb+(1t)a)|qdt10[t|g(n)(b)|q+(1t)|g(n)(a)|q]dt=|g(n)(a)|q+|g(n)(b)|q2 (2.5)

    Using the Theorem 2, we have

    (10|antn++a1t+a0|pdt)1p[10(antn)pdt]1p++[10(a1t)pdt]1p+[10(a0)pdt]1p=|an|(np+1)1/p+|an1||(n1)p+1|1/p++|a1|(p+1)1/p+|a0|=[nk=0|ak|(kp+1)1/p] (2.6)

    By using (2.5) and (2.6), the inequality (2.3) is obtained.

    Theorem 5. Let g:IRR be n times differentiable mapping on I, a,bI with a<b, and p>1such that 1/p+1/q=1 where n is even number. If the mapping |g(n)|p is convex on [a,b], then the inequality in the following holds:

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]|(ba)n2.n!.|an|[nk=0|ak|k+1]11p×{([nk=0|ak|k+2]|g(n)(a)|p+[nk=0|ak|(k+1)(k+2)]|g(n)(b)|p)1p+([nk=0|ak|k+2]|g(n)(b)|p+[nk=0|ak|(k+1)(k+2)]|g(n)(a)|p)1p} (2.7)

    Proof. Using Lemma 2 and power mean integral inequality, one obtains

    |1babag(x)dxg(a)+g(b)2++(ba)n4[n.(n1)(n2).an++4.3.2.a4]2.n!.an×[g(n4)(a)+g(n4)(b)]+(ba)n3[n.(n1).an++4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n3)(b)g(n3)(a)](ba)n2[n.an++2.a2]2.n!.an×[g(n2)(a)+g(n2)(b)]+(ba)n1[an++a1+2a0]2.n!.an×[g(n1)(b)g(n1)(a)]|=|(ba)n2.n!.an×{10(antn++a1t+a0)[g(n)(ta+(1t)b)+g(n)(tb+(1t)a)]dt}|(ba)n2.n!.|an|×[10|antn++a1t+a0||g(n)(ta+(1t)b)|dt+10|antn++a1t+a0||g(n)(tb+(1t)a)|dt](ba)n2.n!.|an|(10|antn++a1t+a0|dt)11p×{(10|antn++a1t+a0|(t|g(n)(a)|p+(1t)|g(n)(b)|p)dt)1p+(10|antn++a1t+a0|(t|g(n)(b)|p+(1t)|gn(a)|p)dt)1p}(ba)n2.n!.|an|.[nk=0|ak|k+1]11p×{([nk=0|ak|k+2].|g(n)(a)|p+[nk=0|ak|(k+1)(k+2)].|g(n)(b)|p)1p+([nk=0|ak|k+2].|g(n)(b)|p+[nk=0|ak|(k+1)(k+2)].|g(n)(a)|p)1p}

    The proof is completed.

    In this section, we consider the results of Section 2 to verify the new proposed inequalities.

    Proposition 1. Let a,bR, 0<a<b, n>2 where n is even number. Then, the inequality in the following holds:

    |Lnn(a,b)A(an,bn)++(ba)n4[n.(n1).(n2).an++4.3.2.a4](a4+b4)2.4!.an+(ba)n3[n.(n1).an++3.2.a3+4.a2](b3a3)2.3!.an(ba)n2[n.an++2.a2](a2+b2)2.2!.an+(ba)n1[an++2.a0](ba)2.an|(ba)n|an|×nk=0|ak|k+1 (3.1)

    Proof. The proof is clearly obtained from Theorem 3 for g(x)=xn, xR.

    Proposition 2. Let a,bR, 0<a<b, n>2 where n is even number. For all p>1, one obtains

    |Lnn(a,b)A(an,bn)++(ba)n4[n.(n1).(n2).an++4.3.2.a4](a4+b4)2.4!.an+(ba)n3[n.(n1).an++3.2.a3+4.a2](b3a3)2.3!.an(ba)n2[n.an++2.a2](a2+b3)2.2!.an+(ba)n1[an++2.a0](ba)2.an|(ba)n|an|×nk=0|ak|(kp+1)1/p (3.2)

    Proof. The proof is completed from Theorem 4 applied for g(x)=xn, xR.

    Proposition 3. Let a,bR, 0<a<b, n>2 where n is even number. Then, we obtain for all p>1,

    |Lnn(a,b)A(an,bn)++(ba)n4[n.(n1).(n2).an++4.3.2.a4](a4+b4)2.4!.an+(ba)n3[n.(n1).an+++3.2.a3+4.a2](b3a3)2.3!.an(ba)n2[n.an++2.a2](a2+b3)2.2!.an+(ba)n1[an+...+2.a0](ba)2.an|(ba)n|an|×(nk=0|ak|k+1)11/p×(nk=0|ak|k+2+nk=0|ak|(k+1)(k+2))1p (3.3)

    Proof. The proof is obtained from Theorem 5 such that g(x)=xn, x[a,b].

    The authors declare that there is no conflict of interest.



    [1] M. A. Ardic, Inequalities via n-times differentiable convex functions, arXiv:1310.0947v1, 2013.
    [2] P. Agarwal, J. Tarioon, S. K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequalities Appl., Article number: 122 (2016).
    [3] M. Bessenyei, Z. Páles, Characterizations of convexity via Hadamard's inequality, Math. Ineq. Appl., 9 (2006), 53-62.
    [4] P. Cerone, S. S. Dragomir, C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.
    [5] P. Cerone, On perturbed trapezoidal and midpoint rules, J. Appl. Math. Comput., 9 (2002), 423-435.
    [6] S. S. Dragomir, P. Cerone, A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31 (2000), 475-494.
    [7] S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33 (1997), 15-20.
    [8] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
    [9] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 2020, 1-18.
    [10] S. Jain, K. Mehrez, D. Baleanu, et al. Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 163.
    [11] W. Liu, J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded variation, J. Comput. Anal. Appl., 22 (2017), 11-18.
    [12] X. F. Ma, L. C. Wang, Two mapping related to Minkowski's inequalities, JIPAM, 10 (2009), 1-8.
    [13] K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Ivlath., 350 (2019), 274-285. doi: 10.1016/j.cam.2018.10.022
    [14] D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.
    [15] P. O. Mohamed, Inequalities of -type for Riemann-Liouville fractional integrals, Appl. Ivlath. ENotes, 17 (2017), 199-206.
    [16] P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262. doi: 10.1016/j.jksus.2017.07.011
    [17] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Inter. Ivlath., 22 (2019), 539-549.
    [18] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., 2019, 1-11.
    [19] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Jnequal. Appl., 2018, 359.
    [20] P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of HermiteHadamard type for convex functions, Symrretry, 11 (2019), 263.
    [21] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Ivlath., 372 (2020), 112740.
    [22] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020, 69.
    [23] C. P. Niculescu, L. E. Persson, Convex functions and their applications: A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
    [24] M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modell., 54 (2011), 2175-2182. doi: 10.1016/j.mcm.2011.05.026
    [25] M. Tomar, P. Agarwal, J. Choi, Hermite-Hadamard type inequalities for generalized convex functions on fractal sets style, Bal. Soc. Paran. Ivlat., 38 (2020), 101-116.
    [26] M. Tunç, G. Şanal, Some perturbed trapezoid inequalities for convex, s-convex and tgs-convex functions and applications, Tbilisi Math, J., 8 (2015), 87-102. doi: 10.1515/tmj-2015-0013
    [27] N. Ujević, Perturbed trapezoid and mid-point inequalities and applications, Soochow J. Math., 29 (2003), 249-257.
    [28] F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of HermiteHadamard type for (α, m)-convex functions, J. Inequal. Appl., DOI: 10.1186/s13660-019-2079-6, 2019, 135.
  • This article has been cited by:

    1. Miguel Vivas-Cortez, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, Trapezium-like Inequalities Involving k-th Order Differentiable Rγ-Convex Functions and Applications, 2022, 14, 2073-8994, 448, 10.3390/sym14030448
    2. Duygu Dönmez Demir, Gülsüm Şanal, On n-times differentiable strongly s-convex functions, 2023, 1, 2956-7068, 201, 10.2478/ijmce-2023-0016
    3. Hasan Kara, Hüseyin Budak, Ahmet Akdemir, Some new parameterized inequalities based on Riemann-Liouville fractional integrals, 2023, 37, 0354-5180, 7867, 10.2298/FIL2323867K
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3760) PDF downloads(258) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog