In this paper, we prove Hermite-Hadamard inequality for convex functions in the framework of $ \mathfrak{h} $-calculus. We also use the notions of $ \mathfrak{h} $-derivative and $ \mathfrak{h} $-integral to prove Ostrowski's and trapezoidal type inequalities for bounded functions. It is also shown that the newly established inequalities are the generalization of the comparable inequalities in the literature. Finally, using some examples, we demonstrate the validity of newly formed inequalities and show how they can be used to special means of real numbers.
Citation: Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial. Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications[J]. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
In this paper, we prove Hermite-Hadamard inequality for convex functions in the framework of $ \mathfrak{h} $-calculus. We also use the notions of $ \mathfrak{h} $-derivative and $ \mathfrak{h} $-integral to prove Ostrowski's and trapezoidal type inequalities for bounded functions. It is also shown that the newly established inequalities are the generalization of the comparable inequalities in the literature. Finally, using some examples, we demonstrate the validity of newly formed inequalities and show how they can be used to special means of real numbers.
[1] | M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Method. Appl. Sci., 44 (2021), 4515–4540. https://doi.org/10.1002/mma.7048 doi: 10.1002/mma.7048 |
[2] | M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{\beta }$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. https://doi.org/10.1186/s13662-020-03163-1 doi: 10.1186/s13662-020-03163-1 |
[3] | M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. https://doi.org/10.1186/s13662-021-03226-x doi: 10.1186/s13662-021-03226-x |
[4] | M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. https://doi.org/10.1186/s13662-020-03195-7 doi: 10.1186/s13662-020-03195-7 |
[5] | M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. https://doi.org/10.1515/math-2021-0015 doi: 10.1515/math-2021-0015 |
[6] | M. A. Ali, H. Budak, A. Akkurt, A. Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. https://doi.org/10.1515/math-2021-0020 doi: 10.1515/math-2021-0020 |
[7] | M. A. Ali, M. Abbas, M. Sehar, G. Murtaza, Simpson's and Newton's type quantum integral inequalities for preinvex functions, Korean J. Math., 29 (2021), 193–203. https://doi.org/10.11568/kjm.2021.29.1.193 doi: 10.11568/kjm.2021.29.1.193 |
[8] | N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, $q$ -Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007 |
[9] | N. Alp, M. Z. Sarikaya, Quantum Hermite-Hadamard's type inequalities for co-ordinated convex functions, Appl. Math. E-Notes, 20 (2020), 341–356. |
[10] | S. Bermudo, P. Kórus, J. N. Valdés, On $q$ -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6 |
[11] | H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. https://doi.org/10.22199/issn.0717-6279-2021-01-0013 doi: 10.22199/issn.0717-6279-2021-01-0013 |
[12] | H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. https://doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6 |
[13] | H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Method. Appl. Sci., 44 (2020), 378–390. https://doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742 |
[14] | H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021, in press. |
[15] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[16] | A. El Farissi, Z. Latreuch, B. Belaïdi, Hadamard-type inequalities for twice differentiable functions, 2009. |
[17] | S. Jhanthanam, T. Jessada, N. K. Sotiris, N. Kamsing, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. https://doi.org/10.3390/math7070632 doi: 10.3390/math7070632 |
[18] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. |
[19] | M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3 |
[20] | C. P. Niculescu, L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 29 (2004), 663–686. |
[21] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090 |
[22] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. https://doi.org/10.1016/j.amc.2015.07.078 doi: 10.1016/j.amc.2015.07.078 |
[23] | E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via $\eta $-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 425. https://doi.org/10.1186/s13662-019-2358-z doi: 10.1186/s13662-019-2358-z |
[24] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, 1992. |
[25] | Y. Tian, Z. Wang, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252 |
[26] | Y. Tian, Z. Wang, Stability analysis and generalised memory controller design for delayed T-S fuzzy systems via flexible polynomial-based functions, IEEE T. Fuzzy Syst., 2020. https://doi.org/10.1109/TFUZZ.2020.3046338 |
[27] | Y. Tian, Z. Wang, A switched fuzzy filter approach to filtering for Takagi-Sugeno fuzzy Markov jump systems with time delay: The continuous-time case, Inform. Sciences, 557 (2021), 236–249. https://doi.org/10.1016/j.ins.2021.01.018 doi: 10.1016/j.ins.2021.01.018 |
[28] | M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for Co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. https://doi.org/10.3390/sym12091476 doi: 10.3390/sym12091476 |