Citation: Min Zhang, Yi Wang, Yan Li. Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential[J]. AIMS Mathematics, 2021, 6(1): 643-674. doi: 10.3934/math.2021039
[1] | D. Bambusi, S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm.Math.Phys., 219 (2001), 465-480. doi: 10.1007/s002200100426 |
[2] | D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, Ⅱ, Commun. Math. Phys., 353 (2017), 353-378. doi: 10.1007/s00220-016-2825-2 |
[3] | N. Bogoliubov, Y. Mitropolsky, A. Samoilenko, The Method of Rapid Convergence in Nonlinear Mechanics, Naukova Dumka: Kiev, 1969, (Russian), English translation: Springer Verlag, 1976. |
[4] | W. Cao, D. Li, Z. Zhang, Optimal superconvergence of energy conserving local discontinuous galerkin methods for wave equations, Commun. Comput. Phys., 21 (2016), 211-236. |
[5] | L. H. Eliasson, B. Grebert, S. B. Kuksin, KAM for the nonlinear beam equation, Geom. Funct. Anal., 26 (2016), 1588-1715. doi: 10.1007/s00039-016-0390-7 |
[6] | L. H. Eliasson, S. B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys., 286 (2009), 125-135. doi: 10.1007/s00220-008-0683-2 |
[7] | L. H. Eliasson, Reducibility for Linear Quasi-periodic Differential Equations, Winter School, St Etienne de Tine, 2011. |
[8] | L. H. Eliasson, B. Grbert, S. B. Kuksin, Almost reducibility of linear quasi-periodic wave equation, Roman: KAM Theory and Dispersive PDEs, 2014. |
[9] | L. H. Eliasson, S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371 |
[10] | J. Geng, X. Xu, J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., 226 (2011), 5361-5402. doi: 10.1016/j.aim.2011.01.013 |
[11] | J. Geng, J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343-372. doi: 10.1007/s00220-005-1497-0 |
[12] | J. Geng, J. You, KAM tori for higher dimensional beam equations with constant potentials, Nonlinearity, 19 (2006), 2405-2423. doi: 10.1088/0951-7715/19/10/007 |
[13] | J. Geng, S. Zhou, An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation, J. Math. Phys., 59 (2018), 1-25. |
[14] | B. Grébert, E. Paturel, On reducibility of quantum harmonic oscillator on $\mathbb{R}^d$ with quasiperiodic in time potential, 2016. Available from: arXiv: 1603.07455[math.AP]. |
[15] | S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, vol. 1556, Berlin: Springer, 1993. |
[16] | D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 1-5. doi: 10.1007/s10915-020-01189-x |
[17] | Z. Liang, X. Wang, On reducibility of 1d wave equation with quasiperiodic in time potentials, J. Dyn. Diff. Equat., 30 (2018), 957-978. doi: 10.1007/s10884-017-9576-4 |
[18] | J. Liu, X. Yuan, Spectrum for quantum duffing oscillator and small divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172. |
[19] | J. Pöschel, A KAM-theorem for some nonlinear PDEs, Ann. Sc. Norm. Super. Pisa Cl. Sci. IV Ser., 23 (1996), 119-148. |
[20] | C. Procesi, M. Procesi, A KAM algorithm for the completely resonant nonlinear Schrödinger equation, Adv. Math., 272 (2015), 399-470. doi: 10.1016/j.aim.2014.12.004 |
[21] | W. M. Wang, Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Commun. Math. Phys., 277 (2008), 459-496. |
[22] | Z. Wu, Z. Wang, Optical vortices in the Ginzburg-Landau equation with cubic-quintic nonlinearity, Nonlinear Dyn., 94 (2018), 2363-2371. doi: 10.1007/s11071-018-4494-5 |
[23] | Z. Wu, P. Li, Y. Zhang, H. Guo, Y. Gu, Multicharged vortex induced in fractional Schrödinger equation with competing nonlocal nonlinearities, J. Opt., 21 (2019). |
[24] | Z. Wu, Z. Wang, H. Guo, W. Wang, Y. Gu, Self-accelerating Airy-Laguerre-Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express, 25 (2017), 1-11. doi: 10.1364/OE.25.000001 |
[25] | C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528. doi: 10.1007/BF02104499 |
[26] | X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differ. Equ., 230 (2006), 213-274. doi: 10.1016/j.jde.2005.12.012 |
[27] | M. Zhang, Quasi-periodic solutions of two dimensional Schrödinger equations with Quasi-periodic forcing, Nonlinear Anal-Theor., 135 (2016), 1-34. doi: 10.1016/j.na.2016.01.012 |