A $ star \; coloring $ of a graph $ G $ is a proper vertex coloring of $ G $ such that any path of length 3 in $ G $ is not bicolored. The $ star \; chromatic \; number $ $ \chi_s(G) $ of $ G $ is the smallest integer $ k $ for which $ G $ admits a star coloring with $ k $ colors. A $ acyclic \; coloring $ of $ G $ is a proper coloring of $ G $ such that any cycle in $ G $ is not bicolored. The $ acyclic \; chromatic \; number $ of $ G $, denoted by $ a(G) $, is the minimum number of colors needed to acyclically color $ G $. In this paper, we present upper bound for the star and acyclic chromatic numbers of the generalized lexicographic product $ G[h_n] $ of graph $ G $ and disjoint graph sequence $ h_n $, where $ G $ exists a $ k- $colorful neighbor star coloring or $ k- $colorful neighbor acyclic coloring. In addition, the upper bounds are tight.
Citation: Jin Cai, Shuangliang Tian, Lizhen Peng. On star and acyclic coloring of generalized lexicographic product of graphs[J]. AIMS Mathematics, 2022, 7(8): 14270-14281. doi: 10.3934/math.2022786
A $ star \; coloring $ of a graph $ G $ is a proper vertex coloring of $ G $ such that any path of length 3 in $ G $ is not bicolored. The $ star \; chromatic \; number $ $ \chi_s(G) $ of $ G $ is the smallest integer $ k $ for which $ G $ admits a star coloring with $ k $ colors. A $ acyclic \; coloring $ of $ G $ is a proper coloring of $ G $ such that any cycle in $ G $ is not bicolored. The $ acyclic \; chromatic \; number $ of $ G $, denoted by $ a(G) $, is the minimum number of colors needed to acyclically color $ G $. In this paper, we present upper bound for the star and acyclic chromatic numbers of the generalized lexicographic product $ G[h_n] $ of graph $ G $ and disjoint graph sequence $ h_n $, where $ G $ exists a $ k- $colorful neighbor star coloring or $ k- $colorful neighbor acyclic coloring. In addition, the upper bounds are tight.
[1] | M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, Coloring with no $2-$colored $P_4$'s, Electron. J. Comb., 11 (2004), 1–13. https://doi.org/10.37236/1779 doi: 10.37236/1779 |
[2] | C. Timmons, Star coloring high girth planar graphs, Electron. J. Comb., 15 (2008), 1–17. https://doi.org/10.37236/848 doi: 10.37236/848 |
[3] | M. A. Shalu, T. P. Sandhya, Star coloring of graphs with girth at least five, Graph Combinator., 32 (2016), 2121–2134. https://doi.org/10.1007/s00373-016-1702-2 doi: 10.1007/s00373-016-1702-2 |
[4] | L. J. E. Mary, A. L. M. J. Rayen, On the star coloring of graphs formed from the cartesian product of some simple graphs, Int. J. Math. Appl., 4 (2006), 115–122. |
[5] | T. Han, Z. Shao, E. Zhu, Z. Li, Star coloring of Cartesian product of paths and cycles, Ars Comb., 124 (2016), 65–84. |
[6] | A. Lyons, Acyclic and star colorings of joins of graphs and an algorithm for cographs, 2009. |
[7] | K. Venkatesan, V. V. Joseph, V. Mathiyazhagan, On star coloring of corona graphs, Appl. Math. E-Notes, 15 (2015), 97–104. |
[8] | U. Subramanian, V. V. Joseph, On star coloring of degree splitting of comb product graphs, NIŠ Ser. Math. Inform., 35 (2020), 507–522. https://doi.org/10.22190/FUMI2002507S doi: 10.22190/FUMI2002507S |
[9] | K. Kaliraj, R. Sivakami, J. Vernold Vivin, On star coloring of modular product of graphs, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 1235–1239. https://doi.org/10.31801/cfsuasmas.768497 doi: 10.31801/cfsuasmas.768497 |
[10] | V. Kowsalya, On star coloring of tensor product of graphs, Malaya J. Maternatik, 8 (2020), 2005–2007. https://doi.org/10.26637/MJM0804/0115 doi: 10.26637/MJM0804/0115 |
[11] | B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math., 14 (1973), 390–408. https://doi.org/10.1007/BF02764716 doi: 10.1007/BF02764716 |
[12] | G. Fertin, E. Godard, A. Raspaud, Minimum feedback vertex set and acyclic coloring, Inform. Process. Lett., 84 (2002), 131–139. https://doi.org/10.1016/S0020-0190(02)00265-X doi: 10.1016/S0020-0190(02)00265-X |
[13] | G. Fertin, E. Godard, A. Raspaud, Acyclic and $k-$distance coloring of the grid, Inform. Process. Lett., 87 (2003), 51–58. https://doi.org/10.1016/S0020-0190(03)00232-1 doi: 10.1016/S0020-0190(03)00232-1 |
[14] | G. Fertin, A. Raspaud, Acyclic coloring of graphs of maximum degree $\Delta$, Discrete Math. Theor. Comput. Sci., 2005,389–396. |
[15] | J. Wang, L. Miao, Acyclic coloring of graphs with maximum degree at most six, Discrete Math., 342 (2019), 3025–3033. https://doi.org/10.1016/j.disc.2019.06.012 doi: 10.1016/j.disc.2019.06.012 |
[16] | J. Wang, L. Miao, W. Song, Y. Liu, Acyclic coloring of graphs with maximum degree 7, Graph Combinator., 37 (2021), 455–469. https://doi.org/10.1007/s00373-020-02254-w doi: 10.1007/s00373-020-02254-w |
[17] | E. Zhu, Z. Li, Z. Shao, J. Xu, C. Liu, Acyclic $3-$coloring of generalized Petersen graphs, J. Comb. Optim., 31 (2016), 902–911. https://doi.org/10.1007/s10878-014-9799-9 doi: 10.1007/s10878-014-9799-9 |
[18] | D. Mondal, R. I. Nishat, M. S. Rahman, S. Whitesides, Acyclic coloring with few division vertices, J. Discrete Algorithms, 23 (2013), 42–53. https://doi.org/10.1016/j.jda.2013.08.002 doi: 10.1016/j.jda.2013.08.002 |
[19] | D. Mondal, R. I. Nishat, S. Whitesides, M. S. Rahman, Acyclic colorings of graph subdivisions, In: C. S. Iliopoulos, W. F. Smyth, IWOCA 2011: Combinatorial algorithms, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-25011-8_20 |
[20] | D. R. Wood, Acyclic, star and oriented colourings of graph subdivisions, Discrete Math. Theor. Comput. Sci., 7 (2005), 37–50. |
[21] | R. E. Jamison, G. L. Matthews, Acyclic colorings of products of cycles, Bull. Inst. Combin. Appl., 54 (2008), 59–76. |
[22] | R. E. Jamison, G. L. Matthews, On the acyclic chromatic number of hamming graphs, Graph Combinator., 24 (2008), 349–360. https://doi.org/10.1007/s00373-008-0798-4 doi: 10.1007/s00373-008-0798-4 |
[23] | R. E. Jamison, G. L. Matthews, J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett., 99 (2006), 7–12. https://doi.org/10.1016/j.ipl.2005.11.023 doi: 10.1016/j.ipl.2005.11.023 |
[24] | S. Špacapan, A. Horvat, On acyclic colorings of direct products, Discuss. Math. Graph Theory, 28 (2008), 323–333. https://doi.org/10.7151/dmgt.1408 doi: 10.7151/dmgt.1408 |
[25] | W. Szumny, I. Włoch, A. Włoch, On the existence and on the number of $(k, 1)-$kernels in the lexicographic product of graphs, Discrete Math., 308 (2008), 4616–4624. https://doi.org/10.1016/j.disc.2007.08.078 doi: 10.1016/j.disc.2007.08.078 |
[26] | T. Karthick, Star coloring of certain graph classes, Graph Combinator., 34 (2018), 109–128. https://doi.org/10.1007/s00373-017-1864-6 doi: 10.1007/s00373-017-1864-6 |