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Abstract: A star coloring of a graph G 1is a proper vertex coloring of G such that any path of length 3
in G is not bicolored. The star chromatic number y (G) of G is the smallest integer k for which G
admits a star coloring with k colors. A acyclic coloring of G is a proper coloring of G such that any
cycle in G is not bicolored. The acyclic chromatic number of G, denoted by a(G), 1s the minimum
number of colors needed to acyclically color G. In this paper, we present upper bound for the star
and acyclic chromatic numbers of the generalized lexicographic product G[4,] of graph G and disjoint
graph sequence h,, where G exists a k—colorful neighbor star coloring or k—colorful neighbor acyclic
coloring. In addition, the upper bounds are tight.
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1. Introduction

A proper vertex coloring of a graph G is a coloring of the vertices of G such that no two neighbors
in G are assigned the same color. A star coloring of a graph G is a proper vertex coloring of G such
that any path of length 3 in G is not bicolored. The star chromatic number y (G) of G is the smallest
integer k for which G admits a star coloring with k colors. A acyclic coloring of a graph G is a proper
vertex coloring of G such that any cycle in G is not bicolored. The acyclic chromatic number of G,
denoted by a(G), is the minimum number of colors needed to acyclically color G. From the definitions
of star and acyclic coloring, we can see that the star chromatic number of a graph is the upper bound
of the acyclic chromatic number of the graph.

In recent decades, many scholars had made extensive researches on star coloring and acyclic
coloring of graphs, and obtained many valuable results, which further enrich the vertex coloring
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theory of graphs. Albertson et al. [1] proved that planar graphs have star colorings with at most 20
colors and exhibited a planar graph which requires 10 colors. Timmons [2] researched the upper
bounds of the star chromatic number of planar graphs with girth at least 9 and 14 respectively. Shalu
and Sandhya [3] researched the upper bound of the star chromatic number of graphs with girth at
least 5. Mary and Rayen [4] studied the star coloring of some graph families formed from the
Cartesian product of some simple graphs. Han et al. [5] obtained the star chromatic numbers for some
infinite subgraphs of Cartesian product of paths and cycles. Lyons [6] researched the star coloring of
joins of graphs. Venkatesan et al. [7] found the star chromatic number for the corona graph of path
with complete graph on the same order, path with cycle on the same order, path on order n with star
graph on order n + 1, path on order n with bipartite graph on order n; + n,, and corona graph of star
graph on order n + 1 with complete graph on order n; + n, respectively. Subramanian and Joseph [8]
gave the exact value of star chromatic number of degree splitting of comb product of complete graph
with complete graph, complete graph with path, complete graph with cycle, complete graph with star
graph, cycle with complete graph, path with complete graph and cycle with path graph. Kaliraj and
Sivakami [9] found the exact values of the star chromatic number of modular product of complete
graph with complete graph, path with complete graph and star graph with complete graph.
Kowsalya [10] researched the star chromatic number of tensor products of path and complete graphs
have been investigated in this article.

Griinbaum [11] proved that the acyclic chromatic number of every planar graph is not more than
9, and proposed the acyclic chromatic number conjecture: The acyclic chromatic number of every
planar graphs does not exceed 5. Fertin et al. [12] obtained the upper or lower bounds of acyclic
chromatic number of graphs of planar graphs, outerplanar graphs, 1—planar graphs, k—trees, etc. Fertin
et al. [12] gave the upper bound of the acyclic chromatic number of d—dimensional grids is d + 1.
In literatures [13—16], the upper bounds of acyclic chromatic number of graphs with maximum degree
3,4, 5, 6,7 are given respectively. Zhu et al. [17] gave the acyclic chromatic number of generalized
Petersen graphs except P(4, 1) and P(5,2) is 3. In literatures [18-20], the exact values or bounds of
acyclic chromatic number of subdivision graphs of different special graphs are given. In literatures [21—
24], the exact value or upper bound of acyclic chromatic number of different product graphs of special
graphs and special graphs is obtained.

In this paper, we will give the upper bounds of the star and acyclic chromatic numbers of generalized
lexicographic product of graphs. Let G be a connected graph of order n and h, = (H,)ev) be a
disjoint graph sequence. The generalized lexicographic product of G and h,, is obtained by following
two steps: (i) Replace each vertex x of G with H,; (i1) Connect the vertex of H, with the vertex of H, if
and only if xy € E(G). In particular, when every graph in £, is isomorphic to H, G[h,] is abbreviated as
G[H], and it is called the lexicographic product of G and H. In literature [25], Szumny et al. gave the
star chromatic number of the lexicographic product of path on order 4 with complete graph on order ¢,
and the lexicographic product of cycle on order 5 with complete graph of order ¢ respectively. We will
generalize their results to the lexicographic product of path or cycle on order n with complete graph of
order .

In order to study the star and acyclic coloring of the generalized lexicographic product of graphs,
the colorful neighbor star and acyclic coloring is introduced. Let o0 = (Vy,Va,...,V}) be a k—star
coloring of G, where y,(G) = k. If there exists a color class V;, such that different neighbors of each
vertex in V;, are colored differently, then o is said to be a k—color ful neighbor star coloring of G, and
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i, 1s said to be a colorful neighbor color class of 0. Let 0 = (V, Va, ..., Vi) be a k—acyclic coloring
of G, where a(G) = k. If there exists a color class V;, such that different neighbors of each vertex in
i, are colored differently, then o~ is said to be a k—color ful neighbor acyclic coloring of G, and V;; is
said to be a colorful neighbor color class of . According to the above definitions, it is easy to get that
paths of order at least 3 have 3—colorful neighbor star coloring, and cycles of order n have 3—colorful
neighbor star and acyclic coloring where n # 5. However, a graph with k—star (or k—acyclic) coloring
does not necessarily have k—colorful neighbor star (or acyclic) coloring. For example, in Figure 1, it
1s obvious that y(G) = 3, but it can be proved that G does not have 3—colorful neighbor star coloring.
The proof is as follows.
Let o be any 3—star coloring of G, and the color set is C = {a, b, c}. Since G[{x, x5, -, X6}] 1S
a cycle on order 6, the 3 colors in C must be represented at the vertices of this cycle. According to
G[{x1, x2,- -, x6}], 3 pairs of relative vertices x; and x4, x, and x5, x3 and x¢ can be divided into two
different modes. Mode I is “exactly one pair of relative vertices in three pairs are the same color”, mode
IT is “each pair of relative vertices in three pairs are the same color”, whether it’s mode I or mode 11,
Gl{x1, x2,- -+ , x¢}] must have three consecutive different top points with different colors, so assume that
o(x1) = a, 0(xy) = b, 0(x3) = c¢. If mode I appears, o(x4) = a, o(xs) = ¢, 0(x6) = 0(x7) = o(xg) =
o(x9) = b. Obviously, there is no colorful neighbor color class. If mode II appears, o(x4) = o(x9) = a,
o(xs) = 0(xg) = b, 0(x¢) = 0(x7) = c. Obviously, there is no colorful neighbor color class. Therefore,
o 1s not 3—colorful neighbor star coloring of G. Since the selection of o is arbitrary, G does not exist
3—colorful neighbor star coloring.

Figure 1. y,(G) = 3.
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2. The star coloring of generalized lexicographic product of graphs

Let G be a graph of order n > 2 and h,, = (H,)ev(c) be a disjoint graph sequence, where each vertex
in the H; is expressed as (x,y). To facilitate the narrative, use E(x, x") to denote the set of all edges of
Glh,] between the vertices of H, and the vertices of H,.. According to the definition of generalized
lexicographic product, the vertex set and the edge set of G[A,,] are

V(GIhD) = | ] VH),EGID =] EH)| | ] E@xx). 2.1)

xeV(G) xeV(G) xx'€eE(G)
In the following theorem, we give the upper bound of the star chromatic number of G[4,,].

Theorem 2.1. Let o = (V, Va,..., Vi) be a colorful neighbor star coloring of G, where V; is a
colorful neighbor color class of o, then

X5(Glh)) < maxy,(H) + > max|V(H)| (2.2)
x€Vi ielk=1] x€V;

Proof. Denote G = Glh,], p = m%x/\/s(Hx), qi = IIlE‘l/X |V(H,)|, where i € [k—1]. Let o7y be a p—star
xeVi XEV;

coloring of |J H,, let 0, be a g;—vertex coloring of |J H, where i € [k — 1] and different vertices in

X€Vi x€V;
each H, are in different colors. Constructa (p + », ¢;)—vertex coloring o of G as follows:
ielk=1]
(o6(x),01(y)) ifxeV,
o((x,y) = . 2.3
(Ce) { (@6, ifx e Vi @3

Obviously, o is a proper vertex coloring of G. Then, it is shown that o is a star coloring of G. Take
any path P of order 4 in G, and the following five cases will be discussed:

Case 1. All four vertices of P are in Hy, . Since o~ is a star coloring limited to every H,, P is not
bicolored.

Case 2. Three vertices of P are in Hxl.O and another vertex is in Hxl,1 , where x; x;, € E(G).
Obviously, at least two of the three vertices of H,, are adjacent to each other, then at least two colors
are needed to color the three vertices. Since x;,x;, € E(G), the color of the vertices of H,, must not
belong to the color set of Hx,.o. Therefore, P is not bicolored.

Case 3. Two vertices of P are in H,, and the other two vertices are in H,, , where x;,x;, € E(G).
Since x;,x;, € E(G), both x;, and x;, can’t belong to V. Hence, P is not bicolored.

Case 4. Two vertices of P are in H,, , the other two vertices are in H,, and H,, respectively, where
the induced subgraph of {x;,, x;,, x;,} in G is a path. If two vertices in H,, are different colors, it is clear
that P is not bicolored. If two vertices in Hxl.0 are the same color, then x;, € V;. Since V is a colorful
neighbor color class of o7, the other two vertices that are adjacent to the two vertices in H,, must be
different colors. Therefore, P is not bicolored.

Case 5. The four vertices of P are respectively in Hxl.o, Hxl,1 , Hx,-z’ Hx[3, where x; x; x;,x;, € E(G).
By definition of o, P is not bicolored.

Therefore, ocisa (p+ ), g;)—star coloring of G.
ielk—1]
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If the above o¢ = (Vi,V,,..., Vi) is a 2—distance coloring of G (which every vertex must be
colored in such a way that two vertices lying at distance less than or equal to 2 must be assigned
different colors), each color class is colorful neighbor color class of 0. Theorem 2.1 can be applied
to each color class, then

Xs(Glh,]) < rirel[lkr]l{r)rcle%)m(Hx) + | %Lné%’f |V(H,)I} (2.4)
JEIKLJ#F1

Suppose G is a complete graph K, of order n > 2, since any k—proper vertex coloring of K, is a
colorful neighbor star coloring of K, and each color class is colorful neighbor color class. Theorem 2.1
can be applied to each color class, so it can be obtained

Xs(Kalhy]) < minfy () + > IV, (2.5)
Jelnl,j#i

This upper bound is tight, as can be seen from Theorem 2.2.

According the definition of the joins of graphs and the generalized lexicographic product of graphs,
the joins G V H of G and H can be regarded as the generalized lexicographic product K;[4,] of K, and
the graph sequence h, of G and H. Lyons obtained the following results in reference [6] on the star
coloring of the joins of any two simple graphs G and H.

Xs(GV H) = min{y,(G) + [V(H)|, x;(H) + [V(G)]}. (2.6)

By using the above formula and mathematical induction, more general results can be obtained. See
Theorem 2.2 for details.

Theorem 2.2. For any integer n > 2,
XKy l) = min{yo(H) + 3 IVCH)I) 27
Jeln).j#i

Proof. We argue by induction on the number of vertices of K, according to the formula 2.6, we
have

Xs(Ks[hy]) = min{y(H,) + |V(H))|, xs(H>) + |V(H,)}. (2.8)

That is, when n = 2, the theorem is valid.
Assume that n = p, the conclusion of the theorem holds, i.e.,

Xs(Kp[hp])=gl[ipr]1L\fs(Hi)+ Z [V(H )|} (2.9)
jelpl.j#i

We need to prove that the theorem is valid whenn = p + 1. When n = 2, since K,,1[h,.1] = K,[h,] V
H,.,, according to the formula 2.6,

p
X;&‘(Kp+1[hp+l]) :X‘Y(Kp[hp] \4 Hp+l)
= min{y(Kp[h,]) + [V(Hp )l xs(Hpi1) + Z \V(H )}

Jelp]
= min{min{y(H;) + E \VH I} xs(Hpi1) + § \V(H )}
i€[pl . . i
jelp+11,j#i Jelp]
= ierg;nl]{XS(Hi) + g |V(Hj)|}-

Jelp+11,j#i
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By the induction hypothesis, the conclusion of the theorem holds.
In Theorem 2.1, if each H; of h, = (H,)xev(c) 1somorphic to H, we can get the upper bound of the
star chromatic number of the lexicographic product of G and H, in Corollary 2.1.

Corollary 2.1. Let G and H be two graphs. If G exists a k—colorful neighbor star coloring, then
Xxs(G[H]) < x,(H) + (k = DIV(H)|. (2.10)

Suppose every H; in h, = (H,).ev(c) 18 a graph of order m and the star chromatic number is r,
we can get the star chromatic number of the generalized lexicographic product P,[h,] or C,[h,], see
Theorem 2.3 and Theorem 2.4 for details.

where every H; is an m—order graph and the star chromatic number is r. Then, y(P,[h,]) = 2m + r.

Theorem 2.3. Let P, be a path where n > 4, and h, = (H,),cv(p,) be a disjoint graph sequence

Proof. Let P, = x;x; - x,, and denote G = P,[h,]. Since P, exists a 3—colorful neighbor star
coloring, according to Theorem 2.1, )(s(é) <2m+r.

To prove XS(G) > 2m + r. Assume Xs(@) <2m+r—-1,and o is a 2m + r — 1)-star coloring of G.
Obviously, forany i = 1,2,--- ,n, r < |CV(Hxi)| <m.Forany j=1,2,--- ,n—1, CV(HXJ,) N CV(HXM) =0,
and at least one of the two equations |CV(HX]_)| = m and |C V(H.x_,+1>| = m is established. According to
whether ICV(HXZ)I =mor |CV(HX3)| = m is established, it can be divided into the following two cases:

Case 6. |CV(HX2)| < m or |CV(HX3)| < m. Suppose ICV(HXZ)I < m, then |CV(HXI)| = ICV(HX3)| = m and
Cv,) N Cy,,) = 0. Therefore, the three sets Cy, ), Cvqu,,) and Cy,,) are pairwise disjoint. Thus,
the star coloring o of G needs at least 2m + r colors, which contradicts the definition of o-.

Case7. |Cvu,,)l = ICyu,,| = m. Atthis point, there will have Cy, )NCyu,,) # 0, otherwise, three
sets Cy,,)» Cvn,, and Cyy,,) are pairwise disjoint. Same as the case 6, it can produce contradictory.
By Cv,) N Cv,y # 0, Cva,,) N Cvn,,) = 0. Hence, the three sets Cy, ), Cv,,) and Cy,,) are
pairwise disjoint. So the star coloring o of G needs at least 2m + r colors, which contradicts the
definition of o.

Therefore, Xs(g) >2m+r.

Theorem 2.4. Let C, be a cycle where n > 4, and h, = (H,).cv(p, be a disjoint graph sequence
where every H; is an m—order graph and the star chromatic number is r. If n # 5, then y(C,[h,]) =
2m + r. Otherwise, y(C,[h,]) = 3m +r.

Proof. Since if n > 4 and n # 5, C, exists 3—colorful neighbor star coloring, it can be obtained
according to Theorem 2.1, y(C,[h,]) < 2m + r. On the other hand, if n > 4, then P,[h,] C C,[h,], it
can be obtained according to Theorem 2.3, y(C,[h,]) > 2m + r. Hence, y(C,[h,]) = 2m + r.

If n = 5, let Cs = x1x2Xx3Xx4Xx5x;, denote G = Cslhs]. Since Cs exists 4—colorful neighbor star
coloring, it can be obtained according to Theorem 2.1, XS(E) < 3m + r. To prove Xs(é) > 3m+r.
Assume XS(G) <3m+r—1and oisa (3m+ r — 1)-star coloring of G. Same as the proof process
of Theorem 2.3, it can be known that, for any three successive vertices x;, x; and x; in Cs, the sets
Cva,, Cvan,) and Cyy,,) are pairwise disjoint, and there is at most one vertex set whose color number

is less than m. Easy to prove, there are at most two vertex sets V(H,,), V(H,, ) in G whose color number
less than m. Otherwise, there will be a bicolored path of order 4, which contradicts the definition of
o. Suppose [Cywuyl < m, |Cyu,l < m. Obviously, the sets Cyw,), Cy,) and Cyy,) are pairwise
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disjoint, and |Cy,)| = |Cyugy| = m. The sets Cyy), Cyuyy and Cyy,) are pairwise disjoint, and
ICviayl = ICya,yl = m. Since Cyy,y N Cyuyy # 0, the star coloring o of G needs at least 3m + r colors,
which contradicts the definition of o

In 2018, Karthick in literature [26] proved that y(P4[K;]) = 3¢, x(Cs[K;]) = 4t. By means of
Theorem 2.3 and Theorem 2.4 in this paper, the above results can be extended to the lexicographic
product of path or cycle of order n and complete graph of order ¢, where n > 4. See Corollary 2.2 for
specific results.

Corollary 2.2. y(P,[K,]) = 3t, where n > 4. (2) x,(C,[K;]) = 3t, where n > 4 and n # 5.
3. The acyclic coloring of generalized lexicographic product of graphs

In this section, we study the acyclic coloring of generalized lexicographic product G[H,].
In the following theorem, we establish an upper bound of the acyclic chromatic number of G[H,].

Theorem 3.1. Let o = (V, Vs, ..., Vi) be a colorful neighbor acyclic coloring of G, where V; is
a colorful neighbor color class of o, then

a(Glh,)) < m%x a(H,) + Z mz}/X |V(H,)|. (3.1
ek ietm1] *

Proof. Denote G = Glh,], p = ma‘l/x a(H,), q; = me‘1/X|V(Hx)|, where i € [k — 1]. And let o; be a
xeVy XeVi

p-acyclic coloring of |J H,, let o, be a g;—vertex coloring of | J H, where i € [k — 1] and different

xeVy x€V;
vertices in each H, are in different colors. Constructa (p+ ), ¢g;)—vertex coloring o of G as follows:
ielk—1]
(o6(0),01(0)  if x €V,
o((x, = . 3.2
(o) { (@60, 200 if ¥ Vi G-

Obviously, o is a proper vertex coloring of G. Then, it is shown that o is an acyclic coloring of G.
Take any cycle C of order 4 in G, and the following four cases will be discussed:

Case 8. All vertices of C are in H,, . Since o is an acyclic coloring limited to every H,, C is not
bicolored.

Case 9. All vertices of C are in Hxl.O and Hx,.l, where x;,x;, € E(G). In fact, there is at least one
Xiy» Xi; ¢ Vi. Therefore, C is not bicolored.

Case 10. All vertices of C are in foo’ Hxi] and Hxl.z, where G[{x;,, x;,, x;,}] contains a path of
length 2. Suppose without loss of generality that x; x; x;, is a path in G, obviously, there are at least
two vertices of C are in Hx,.] . If these two vertices are in different color, C is not bicolored. If these two
vertices are in same color, then x; € V;. Since V; is a colorful neighbor color class of o, the color
sets H,, is disjoint with H,, . Therefore, C is not bicolored.

Case 11. The vertices of C are distributed in at least four different H,, , H, , Hy,,, and H,, , where
Gl{x;,, xi,, X;,, x;,}] contains a path of length 3. Suppose without loss of generality that x; x; x;,x;; is a
path in G, obviously, there are at least two vertices of C are in H,, and at least two vertices of C are in
H,, . According to the proof process of case 10, the vertices of C in H,, and H,, are at least in three
colors.
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Therefore, ocisa (p+ 2, ¢g;)—acyclic coloring of G.
ielk—1]
If the above o = (V1,Va,...,Vy) 1s a 2—distance coloring of G, each color class is colorful

neighbor color class of 0. Theorem 3.1 can be applied to each color class, then

a(Glh,)) < min(maxa(H,) + ) max|V(H)). (3.3)

i€lk] xeV;
' jetkl.j#i

colorful neighbor acyclic coloring of K,, and each color class is colorful neighbor color class.
Theorem 3.1 can be applied to each color class, so it can be obtained

When G is a complete graph K, of order n > 2, since any k—proper vertex coloring of K, is a

a(K, b)) < minfa(H) + ) IV(HI). (34

JEln].j#i

This upper bound is tight, see the Theorem 3.2.
About the acyclic coloring of the joins of any two simple graphs G and H, we have

a(G Vv H) = min{a(G) + |V(H)|,a(H) + |V(G)|}. (3.5)

By using the above formula and mathematical induction, more general results can be obtained. See
Theorem 3.2 for details.

Theorem 3.2. For any integer n > 2,

a(K, ) = minfa(H) + ) IV(HI) (3.6)

jeln, j#i

Proof. We argue by induction on the number of vertices of K,,. First of all, the result is valid for
the case when n=2.
a(Kz[hy]) = min{a(Hy) + |V(Hy)|, a(H>) + [V(H))}. (3.7)

That is, when n = 2, the theorem is valid.
Assume that n = p, the conclusion of the theorem holds, i.e.

a(Kp[hp])=Iig[ipr]1{a(Hi)+ Z [V(H I} (3.8)

Jelpl.j#i

We need to prove that the theorem is valid when n = p + 1. When n = 2, since K,1[hp.1] = Kp[h,] Vv
H,.1, according to the above formula,

a(Kp+l[hp+l]) = a(Kp[hp] \ Hp+l)
= minfa(Kp[h,]) + |[V(Hp1)l, a(Hpi1) + Z |V(H )|}

J€lpl
= min{minf{a(H;) + Z \V(H)I}, a(H 1) + Z |V(H I}
ielp] jelpr1l,j#i jelpl
= min {a(H,) + Z |V(H))I}.

i€[p+1]
b JelpF1) i
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According to the principle of mathematical induction, the conclusion of the theorem holds.
In Theorem 3.1, if each H; of h, = (H,)xev(c) 1somorphic to H, we can get the upper bound of the
acyclic chromatic number of the lexicographic product of G and H, in Corollary 3.1.

Corollary 3.1. Let G and H be two graphs. If G exists k—colorful neighbor acyclic coloring, then
a(G[H]) < a(H) + (k — D|V(H)|. (3.9)

When every H; in h, = (H,)yev(c) 1s an m—order graph and the acyclic chromatic number is r, we
can get the acyclic chromatic number of the generalized lexicographic product C,[4,], see Theorem 3.3
for details.

Theorem 3.3. Let C, be a cycle where n > 4, and h, = (H,).ev(p,) be a disjoint graph sequence
where every H; is an m—order graph and the acyclic chromatic number is r. If nis even and n > 2m+2,
then a(C,[h,]) < 2m + 1. If nis odd, then a(C,[h,]) < 2m + r.

Proof. LetC, = x1x; - - - x,X1, and denote G = Cslhs]. Sinceif n > 4, C, exists 3—colorful neighbor
acyclic coloring, it can be obtained according to Theorem 3.1, a(é) < 2m + r. Thus, if n is odd, we
have a(C,[h,]) < 2m +r.

If niseven and n > 2m + 2. Let o6 = (Vi, V,) be a acyclic coloring of C,, where V| = {x;|(i), = 0},
Vo = {xil(i), = 1}. To prove a(g) < 2m + 1. Construct a coloring o of G as follows: Let C =
{0,1,....,m},Co ={m+1,m+2,...,2m}. If x; € Vi, use the color set C;/{(i/2),,+1} to color every H,..
If x; € V5, use the color set C; to color every H,,. In particular, different vertices of every H,, are in
different colors. It is easy to prove that o is a (2m + 1)-acyclic coloring of G. Thus, if n is even and
n>2m+ 2, we have a(C,[h,]) < 2m + 1.

For the upper bound of acyclic chromatic number of generalized lexicographic product G[h,],
where the acyclic chromatic number of G is k but G does not exist k—colorful neighbor acyclic coloring,
see Theorem 3.4.

Theorem 3.4. Let o = (V1,V,,..., Vi) be a acyclic coloring of G, then

a(Glh,) < ) max [V(H,)] (3.10)

i€[k]

Proof. Denote G = Glh,], pi = r)rclee‘l/xW(Hx)l, where i € [k]. Let oy be a ¢;—vertex coloring of

U H,, and different vertices of every H, are in different colors, where i € [k]. Construct a
xeV;

( Y, pi)—coloring o of G as follows:
iclk]
o ((x,y)) = (06(x), 01(y)). (3.11)

It is easy to prove that o is a proper vertex coloring G. As a matter of fact, since different vertices
of every H, are in different color, and for any x;,x;, € E(G), we have the color set H,Ci0 is disjoint with

H,, . Any cycle of G is not bicolored. Therefore, o is a ( 3] pi)—acyclic coloring of G.
i€[k]
The upper bound of Theorem 3.4 is tight, such as when every H; of h, = (H,).ev(c) has m vertices,

the acyclic chromatic number of P,[h,] is 2m, see Theorem 3.5 for details.
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Theorem 3.5. Let P, be a path where n > 4, and h, = (H,),cv(p,) be a disjoint graph sequence

where every H; is an m—order graph. Then, a(P,[h,]) = 2m.

Proof. Let P, = = X1Xp 0 Xy, and denote G = P,[h,]. Since Pn exists 2—acyclic coloring, according
to Theorem 3.4, a(G) < 2m. To prove a(G) > 2m. Assume a(G) <2m-1,and opisa (2m— 1) acyclic

coloring of G. Obviously, forany i = 1,2,--- ,n, a(H,,) < ICV(HX’,)I <m. Forany j=1,2,--- ,n—1,
CV(H,\-/.) N CV(HXJ-H) = (, and only one of the two equations ICV(HXj)| = m and |CV(HXM)| = m is true.
According to whether |Cyy, )| = m is true or not, it can be divided into the following two cases:

Case 12. ICV(HXZ)I < m. It is easy to prove that |CV(HX1)| = |CV(Hx3)| = m and CV(Hxl) N CV(HX3) = 0.

Therefore, the three sets Cy, ), Cv,,) and Cy,,) are pairwise disjoint. Thus, the acyclic coloring o

of G needs at least 2m + a(H,,) colors, which contradicts the definition of .
Case 13. |CV(Hx2)| = m. At this time, |Cv([-1x3)| > CZ(HX3). Then, CV(HX3) N CV(HM) = () and CV(HXZ) N
Cv,,) = 0. Thus, three sets Cy,,), Cva,,) and Cy,,) are pairwise disjoint. Therefore, the acyclic

coloring o of G needs at least 2m + a(H,,) colors, which contradicts the definition of .
Thus, a(G) > 2m. Then, a(G) =2m.

4. Conclusions

In this paper, we mainly study the star and acyclic coloring of generalized lexicographic product
of graphs. we present upper bound for the star and acyclic chromatic numbers of the generalized
lexicographic product G[h,] of graph G and disjoint graph sequence h,, where G exists a k—colorful
neighbor star coloring or k—colorful neighbor acyclic coloring.

In addition, we obtain the exact value of the star chromatic numbers of the generalized
lexicographic product of complete graph, path, cycle and special disjoint graph sequences. And we
also obtain the exact value of the acyclic chromatic numbers of the generalized lexicographic product
of complete graph, path and special disjoint graph sequence. These exact values can prove that the
upper bounds we get are tight.

According to Theorem 2.2 and Theorem 2.4, the star chromatic number of the generalized
lexicographic product of complete graph and disjoint graph sequence of the same order with star
chromatic number and acyclic chromatic number is equal to its acyclic chromatic number. On this
basis, we put forward the following problem to be solved:

What condition does the graph G satisty if y(G[h,]) = a(G[h,])?
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