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Abstract: A star coloring of a graph G is a proper vertex coloring of G such that any path of length 3
in G is not bicolored. The star chromatic number χs(G) of G is the smallest integer k for which G
admits a star coloring with k colors. A acyclic coloring of G is a proper coloring of G such that any
cycle in G is not bicolored. The acyclic chromatic number of G, denoted by a(G), is the minimum
number of colors needed to acyclically color G. In this paper, we present upper bound for the star
and acyclic chromatic numbers of the generalized lexicographic product G[hn] of graph G and disjoint
graph sequence hn, where G exists a k−colorful neighbor star coloring or k−colorful neighbor acyclic
coloring. In addition, the upper bounds are tight.
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1. Introduction

A proper vertex coloring of a graph G is a coloring of the vertices of G such that no two neighbors
in G are assigned the same color. A star coloring of a graph G is a proper vertex coloring of G such
that any path of length 3 in G is not bicolored. The star chromatic number χs(G) of G is the smallest
integer k for which G admits a star coloring with k colors. A acyclic coloring of a graph G is a proper
vertex coloring of G such that any cycle in G is not bicolored. The acyclic chromatic number of G,
denoted by a(G), is the minimum number of colors needed to acyclically color G. From the definitions
of star and acyclic coloring, we can see that the star chromatic number of a graph is the upper bound
of the acyclic chromatic number of the graph.

In recent decades, many scholars had made extensive researches on star coloring and acyclic
coloring of graphs, and obtained many valuable results, which further enrich the vertex coloring
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theory of graphs. Albertson et al. [1] proved that planar graphs have star colorings with at most 20
colors and exhibited a planar graph which requires 10 colors. Timmons [2] researched the upper
bounds of the star chromatic number of planar graphs with girth at least 9 and 14 respectively. Shalu
and Sandhya [3] researched the upper bound of the star chromatic number of graphs with girth at
least 5. Mary and Rayen [4] studied the star coloring of some graph families formed from the
Cartesian product of some simple graphs. Han et al. [5] obtained the star chromatic numbers for some
infinite subgraphs of Cartesian product of paths and cycles. Lyons [6] researched the star coloring of
joins of graphs. Venkatesan et al. [7] found the star chromatic number for the corona graph of path
with complete graph on the same order, path with cycle on the same order, path on order n with star
graph on order n + 1, path on order n with bipartite graph on order n1 + n2, and corona graph of star
graph on order n + 1 with complete graph on order n1 + n2 respectively. Subramanian and Joseph [8]
gave the exact value of star chromatic number of degree splitting of comb product of complete graph
with complete graph, complete graph with path, complete graph with cycle, complete graph with star
graph, cycle with complete graph, path with complete graph and cycle with path graph. Kaliraj and
Sivakami [9] found the exact values of the star chromatic number of modular product of complete
graph with complete graph, path with complete graph and star graph with complete graph.
Kowsalya [10] researched the star chromatic number of tensor products of path and complete graphs
have been investigated in this article.

Grünbaum [11] proved that the acyclic chromatic number of every planar graph is not more than
9, and proposed the acyclic chromatic number conjecture: The acyclic chromatic number of every
planar graphs does not exceed 5. Fertin et al. [12] obtained the upper or lower bounds of acyclic
chromatic number of graphs of planar graphs, outerplanar graphs, 1−planar graphs, k−trees, etc. Fertin
et al. [12] gave the upper bound of the acyclic chromatic number of d−dimensional grids is d + 1.
In literatures [13–16], the upper bounds of acyclic chromatic number of graphs with maximum degree
3, 4, 5, 6, 7 are given respectively. Zhu et al. [17] gave the acyclic chromatic number of generalized
Petersen graphs except P(4, 1) and P(5, 2) is 3. In literatures [18–20], the exact values or bounds of
acyclic chromatic number of subdivision graphs of different special graphs are given. In literatures [21–
24], the exact value or upper bound of acyclic chromatic number of different product graphs of special
graphs and special graphs is obtained.

In this paper, we will give the upper bounds of the star and acyclic chromatic numbers of generalized
lexicographic product of graphs. Let G be a connected graph of order n and hn = (Hx)x∈V(G) be a
disjoint graph sequence. The generalized lexicographic product of G and hn is obtained by following
two steps: (i) Replace each vertex x of G with Hx; (ii) Connect the vertex of Hx with the vertex of Hy if
and only if xy ∈ E(G). In particular, when every graph in hn is isomorphic to H, G[hn] is abbreviated as
G[H], and it is called the lexicographic product of G and H. In literature [25], Szumny et al. gave the
star chromatic number of the lexicographic product of path on order 4 with complete graph on order t,
and the lexicographic product of cycle on order 5 with complete graph of order t respectively. We will
generalize their results to the lexicographic product of path or cycle on order n with complete graph of
order t.

In order to study the star and acyclic coloring of the generalized lexicographic product of graphs,
the colorful neighbor star and acyclic coloring is introduced. Let σ = (V1,V2, . . . ,Vk) be a k−star
coloring of G, where χs(G) = k. If there exists a color class Vi0 such that different neighbors of each
vertex in Vi0 are colored differently, then σ is said to be a k−color f ul neighbor star coloring of G, and

AIMS Mathematics Volume 7, Issue 8, 14270–14281.



14272

Vi0 is said to be a colorful neighbor color class of σ. Let σ′ = (V1,V2, . . . ,Vk) be a k−acyclic coloring
of G, where a(G) = k. If there exists a color class Vi0 such that different neighbors of each vertex in
Vi0 are colored differently, then σ′ is said to be a k−color f ul neighbor acyclic coloring of G, and Vi0 is
said to be a colorful neighbor color class of σ′. According to the above definitions, it is easy to get that
paths of order at least 3 have 3−colorful neighbor star coloring, and cycles of order n have 3−colorful
neighbor star and acyclic coloring where n , 5. However, a graph with k−star (or k−acyclic) coloring
does not necessarily have k−colorful neighbor star (or acyclic) coloring. For example, in Figure 1, it
is obvious that χs(G) = 3, but it can be proved that G does not have 3−colorful neighbor star coloring.
The proof is as follows.

Let σ be any 3−star coloring of G, and the color set is C = {a, b, c}. Since G[{x1, x2, · · · , x6}] is
a cycle on order 6, the 3 colors in C must be represented at the vertices of this cycle. According to
G[{x1, x2, · · · , x6}], 3 pairs of relative vertices x1 and x4, x2 and x5, x3 and x6 can be divided into two
different modes. Mode I is “exactly one pair of relative vertices in three pairs are the same color”, mode
II is “each pair of relative vertices in three pairs are the same color”, whether it’s mode I or mode II,
G[{x1, x2, · · · , x6}] must have three consecutive different top points with different colors, so assume that
σ(x1) = a, σ(x2) = b, σ(x3) = c. If mode I appears, σ(x4) = a, σ(x5) = c, σ(x6) = σ(x7) = σ(x8) =
σ(x9) = b. Obviously, there is no colorful neighbor color class. If mode II appears, σ(x4) = σ(x9) = a,
σ(x5) = σ(x8) = b, σ(x6) = σ(x7) = c. Obviously, there is no colorful neighbor color class. Therefore,
σ is not 3−colorful neighbor star coloring of G. Since the selection of σ is arbitrary, G does not exist
3−colorful neighbor star coloring.

Figure 1. χs(G) = 3.
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2. The star coloring of generalized lexicographic product of graphs

Let G be a graph of order n ≥ 2 and hn = (Hx)x∈V(G) be a disjoint graph sequence, where each vertex
in the Hk is expressed as (x, y). To facilitate the narrative, use E(x, x′) to denote the set of all edges of
G[hn] between the vertices of Hx and the vertices of Hx′ . According to the definition of generalized
lexicographic product, the vertex set and the edge set of G[hn] are

V(G[hn]) =
⋃

x∈V(G)

V(Hx), E(G[hn]) = (
⋃

x∈V(G)

E(Hx))
⋃

(
⋃

xx′∈E(G)

E(x, x′)). (2.1)

In the following theorem, we give the upper bound of the star chromatic number of G[hn].

Theorem 2.1. Let σG = (V1,V2, . . . ,Vk) be a colorful neighbor star coloring of G, where Vk is a
colorful neighbor color class of σG, then

χs(G[hn]) ≤ max
x∈Vk
χs(Hx) +

∑
i∈[k−1]

max
x∈Vi
|V(Hx)|. (2.2)

Proof. Denote G̃ = G[hn], p = max
x∈Vk
χs(Hx), qi = max

x∈Vi
|V(Hx)|, where i ∈ [k− 1]. Let σ1 be a p−star

coloring of
⋃

x∈Vk

Hx, let σ2 be a qi−vertex coloring of
⋃

x∈Vi

Hx where i ∈ [k − 1] and different vertices in

each Hx are in different colors. Construct a (p +
∑

i∈[k−1]
qi)−vertex coloring σ of G̃ as follows:

σ((x, y)) =
{

(σG(x), σ1(y)) if x ∈ Vk,

(σG(x), σ2(y)) if x < Vk.
(2.3)

Obviously, σ is a proper vertex coloring of G̃. Then, it is shown that σ is a star coloring of G̃. Take
any path P of order 4 in G̃, and the following five cases will be discussed:

Case 1. All four vertices of P are in Hxi0
. Since σ is a star coloring limited to every Hx, P is not

bicolored.
Case 2. Three vertices of P are in Hxi0

and another vertex is in Hxi1
, where xi0 xi1 ∈ E(G).

Obviously, at least two of the three vertices of Hxi0
are adjacent to each other, then at least two colors

are needed to color the three vertices. Since xi0 xi1 ∈ E(G), the color of the vertices of Hxi1
must not

belong to the color set of Hxi0
. Therefore, P is not bicolored.

Case 3. Two vertices of P are in Hxi0
and the other two vertices are in Hxi1

, where xi0 xi1 ∈ E(G).
Since xi0 xi1 ∈ E(G), both xi0 and xi1 can’t belong to Vk. Hence, P is not bicolored.

Case 4. Two vertices of P are in Hxi0
, the other two vertices are in Hxi1

and Hxi2
respectively, where

the induced subgraph of {xi0 , xi1 , xi2} in G is a path. If two vertices in Hxi0
are different colors, it is clear

that P is not bicolored. If two vertices in Hxi0
are the same color, then xi0 ∈ Vk. Since Vk is a colorful

neighbor color class of σG, the other two vertices that are adjacent to the two vertices in Hxi0
must be

different colors. Therefore, P is not bicolored.
Case 5. The four vertices of P are respectively in Hxi0

, Hxi1
, Hxi2

, Hxi3
, where xi0 xi1 xi2 xi3 ∈ E(G).

By definition of σ, P is not bicolored.
Therefore, σ is a (p +

∑
i∈[k−1]

qi)−star coloring of G̃.
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If the above σG = (V1,V2, . . . ,Vk) is a 2−distance coloring of G (which every vertex must be
colored in such a way that two vertices lying at distance less than or equal to 2 must be assigned
different colors), each color class is colorful neighbor color class of σG. Theorem 2.1 can be applied
to each color class, then

χs(G[hn]) ≤ min
i∈[k]
{max

x∈Vi
χs(Hx) +

∑
j∈[k], j,i

max
x∈V j
|V(Hx)|}. (2.4)

Suppose G is a complete graph Kn of order n ≥ 2, since any k−proper vertex coloring of Kn is a
colorful neighbor star coloring of Kn, and each color class is colorful neighbor color class. Theorem 2.1
can be applied to each color class, so it can be obtained

χs(Kn[hn]) ≤ min
i∈[n]
{χs(Hi) +

∑
j∈[n], j,i

|V(H j)|}. (2.5)

This upper bound is tight, as can be seen from Theorem 2.2.
According the definition of the joins of graphs and the generalized lexicographic product of graphs,

the joins G ∨ H of G and H can be regarded as the generalized lexicographic product K2[h2] of K2 and
the graph sequence h2 of G and H. Lyons obtained the following results in reference [6] on the star
coloring of the joins of any two simple graphs G and H.

χs(G ∨ H) = min{χs(G) + |V(H)|, χs(H) + |V(G)|}. (2.6)

By using the above formula and mathematical induction, more general results can be obtained. See
Theorem 2.2 for details.

Theorem 2.2. For any integer n ≥ 2,

χs(Kn[hn]) = min
i∈[n]
{χs(Hi) +

∑
j∈[n], j,i

|V(H j)|}. (2.7)

Proof. We argue by induction on the number of vertices of Kn, according to the formula 2.6, we
have

χs(K2[h2]) = min{χs(H1) + |V(H2)|, χs(H2) + |V(H1)}. (2.8)

That is, when n = 2, the theorem is valid.
Assume that n = p, the conclusion of the theorem holds, i.e.,

χs(Kp[hp]) = min
i∈[p]
{χs(Hi) +

∑
j∈[p], j,i

|V(H j)|}. (2.9)

We need to prove that the theorem is valid when n = p + 1. When n = 2, since Kp+1[hp+1] = Kp[hp] ∨
Hp+1, according to the formula 2.6,

χs(Kp+1[hp+1]) = χs(Kp[hp] ∨ Hp+1)

= min{χs(Kp[hp]) + |V(Hp+1)|, χs(Hp+1) +
∑
j∈[p]

|V(H j)|}

= min{min
i∈[p]
{χs(Hi) +

∑
j∈[p+1], j,i

|V(H j)|}, χs(Hp+1) +
∑
j∈[p]

|V(H j)|}

= min
i∈[p+1]

{χs(Hi) +
∑

j∈[p+1], j,i

|V(H j)|}.
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By the induction hypothesis, the conclusion of the theorem holds.
In Theorem 2.1, if each Hi of hn = (Hx)x∈V(G) isomorphic to H, we can get the upper bound of the

star chromatic number of the lexicographic product of G and H, in Corollary 2.1.

Corollary 2.1. Let G and H be two graphs. If G exists a k−colorful neighbor star coloring, then

χs(G[H]) ≤ χs(H) + (k − 1)|V(H)|. (2.10)

Suppose every Hi in hn = (Hx)x∈V(G) is a graph of order m and the star chromatic number is r,
we can get the star chromatic number of the generalized lexicographic product Pn[hn] or Cn[hn], see
Theorem 2.3 and Theorem 2.4 for details.

Theorem 2.3. Let Pn be a path where n ≥ 4, and hn = (Hx)x∈V(Pn) be a disjoint graph sequence
where every Hi is an m−order graph and the star chromatic number is r. Then, χs(Pn[hn]) = 2m + r.

Proof. Let Pn = x1x2 · · · xn, and denote G̃ = Pn[hn]. Since Pn exists a 3−colorful neighbor star
coloring, according to Theorem 2.1, χs(G̃) ≤ 2m + r.

To prove χs(G̃) ≥ 2m + r. Assume χs(G̃) ≤ 2m + r − 1, and σ is a (2m + r − 1)-star coloring of G̃.
Obviously, for any i = 1, 2, · · · , n, r ≤ |CV(Hxi )| ≤ m. For any j = 1, 2, · · · , n − 1, CV(Hx j ) ∩CV(Hx j+1 ) = ∅,
and at least one of the two equations |CV(Hx j )| = m and |CV(Hx j+1 )| = m is established. According to
whether |CV(Hx2 )| = m or |CV(Hx3 )| = m is established, it can be divided into the following two cases:

Case 6. |CV(Hx2 )| < m or |CV(Hx3 )| < m. Suppose |CV(Hx2 )| < m, then |CV(Hx1 )| = |CV(Hx3 )| = m and
CV(Hx1 ) ∩ CV(Hx3 ) = ∅. Therefore, the three sets CV(Hx1 ), CV(Hx2 ) and CV(Hx3 ) are pairwise disjoint. Thus,
the star coloring σ of G̃ needs at least 2m + r colors, which contradicts the definition of σ.

Case 7. |CV(Hx2 )| = |CV(Hx3 )| = m. At this point, there will have CV(Hx1 )∩CV(Hx3 ) , ∅, otherwise, three
sets CV(Hx1 ), CV(Hx2 ) and CV(Hx3 ) are pairwise disjoint. Same as the case 6, it can produce contradictory.
By CV(Hx1 ) ∩ CV(Hx3 ) , ∅, CV(Hx2 ) ∩ CV(Hx4 ) = ∅. Hence, the three sets CV(Hx1 ), CV(Hx2 ) and CV(Hx3 ) are
pairwise disjoint. So the star coloring σ of G̃ needs at least 2m + r colors, which contradicts the
definition of σ.

Therefore, χs(G̃) ≥ 2m + r.

Theorem 2.4. Let Cn be a cycle where n ≥ 4, and hn = (Hx)x∈V(Pn) be a disjoint graph sequence
where every Hi is an m−order graph and the star chromatic number is r. If n , 5, then χs(Cn[hn]) =
2m + r. Otherwise, χs(Cn[hn]) = 3m + r.

Proof. Since if n ≥ 4 and n , 5, Cn exists 3−colorful neighbor star coloring, it can be obtained
according to Theorem 2.1, χs(Cn[hn]) ≤ 2m + r. On the other hand, if n ≥ 4, then Pn[hn] ⊆ Cn[hn], it
can be obtained according to Theorem 2.3, χs(Cn[hn]) ≥ 2m + r. Hence, χs(Cn[hn]) = 2m + r.

If n = 5, let C5 = x1x2x3x4x5x1, denote G̃ = C5[h5]. Since C5 exists 4−colorful neighbor star
coloring, it can be obtained according to Theorem 2.1, χs(G̃) ≤ 3m + r. To prove χs(G̃) ≥ 3m + r.
Assume χs(G̃) ≤ 3m + r − 1 and σ is a (3m + r − 1)-star coloring of G̃. Same as the proof process
of Theorem 2.3, it can be known that, for any three successive vertices xi, x j and xk in C5, the sets
CV(Hxi ), CV(Hx j ) and CV(Hxk ) are pairwise disjoint, and there is at most one vertex set whose color number

is less than m. Easy to prove, there are at most two vertex sets V(Hxi′ ), V(Hxi′′ ) in G̃ whose color number
less than m. Otherwise, there will be a bicolored path of order 4, which contradicts the definition of
σ. Suppose |CV(H1)| < m, |CV(H3)| < m. Obviously, the sets CV(H1), CV(H2) and CV(H5) are pairwise
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disjoint, and |CV(H2)| = |CV(H5)| = m. The sets CV(H2), CV(H3) and CV(H4) are pairwise disjoint, and
|CV(H2)| = |CV(H4)| = m. Since CV(H4) ∩CV(H5) , ∅, the star coloring σ of G̃ needs at least 3m + r colors,
which contradicts the definition of σ.

In 2018, Karthick in literature [26] proved that χs(P4[Kt]) = 3t, χs(C5[Kt]) = 4t. By means of
Theorem 2.3 and Theorem 2.4 in this paper, the above results can be extended to the lexicographic
product of path or cycle of order n and complete graph of order t, where n ≥ 4. See Corollary 2.2 for
specific results.

Corollary 2.2. χs(Pn[Kt]) = 3t, where n ≥ 4. (2) χs(Cn[Kt]) = 3t, where n ≥ 4 and n , 5.

3. The acyclic coloring of generalized lexicographic product of graphs

In this section, we study the acyclic coloring of generalized lexicographic product G[Hn].
In the following theorem, we establish an upper bound of the acyclic chromatic number of G[Hn].

Theorem 3.1. Let σG = (V1,V2, . . . ,Vk) be a colorful neighbor acyclic coloring of G, where Vk is
a colorful neighbor color class of σG, then

a(G[hn]) ≤ max
x∈Vk

a(Hx) +
∑

i∈[k−1]

max
x∈Vi
|V(Hx)|. (3.1)

Proof. Denote G̃ = G[hn], p = max
x∈Vk

a(Hx), qi = max
x∈Vi
|V(Hx)|, where i ∈ [k − 1]. And let σ1 be a

p-acyclic coloring of
⋃

x∈Vk

Hx, let σ2 be a qi−vertex coloring of
⋃

x∈Vi

Hx where i ∈ [k − 1] and different

vertices in each Hx are in different colors. Construct a (p+
∑

i∈[k−1]
qi)−vertex coloring σ of G̃ as follows:

σ((x, y)) =
{

(σG(x), σ1(y)) i f x ∈ Vk,

(σG(x), σ2(y)) i f x < Vk.
(3.2)

Obviously, σ is a proper vertex coloring of G̃. Then, it is shown that σ is an acyclic coloring of G̃.
Take any cycle C of order 4 in G̃, and the following four cases will be discussed:

Case 8. All vertices of C are in Hxi0
. Since σ is an acyclic coloring limited to every Hx, C is not

bicolored.
Case 9. All vertices of C are in Hxi0

and Hxi1
, where xi0 xi1 ∈ E(G). In fact, there is at least one

xi0 , xi1 < Vk. Therefore, C is not bicolored.
Case 10. All vertices of C are in Hxi0

, Hxi1
and Hxi2

, where G[{xi0 , xi1 , xi2}] contains a path of
length 2. Suppose without loss of generality that xi0 xi1 xi2 is a path in G, obviously, there are at least
two vertices of C are in Hxi1

. If these two vertices are in different color, C is not bicolored. If these two
vertices are in same color, then xi1 ∈ Vk. Since Vk is a colorful neighbor color class of σG, the color
sets Hxi0

is disjoint with Hxi2
. Therefore, C is not bicolored.

Case 11. The vertices of C are distributed in at least four different Hxi0
, Hxi1

, Hxi2
, and Hxi3

, where
G[{xi0 , xi1 , xi2 , xi3}] contains a path of length 3. Suppose without loss of generality that xi0 xi1 xi2 xi3 is a
path in G, obviously, there are at least two vertices of C are in Hxi1

and at least two vertices of C are in
Hxi2

. According to the proof process of case 10, the vertices of C in Hxi1
and Hxi2

are at least in three
colors.
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Therefore, σ is a (p +
∑

i∈[k−1]
qi)−acyclic coloring of G̃.

If the above σG = (V1,V2, . . . ,Vk) is a 2−distance coloring of G, each color class is colorful
neighbor color class of σG. Theorem 3.1 can be applied to each color class, then

a(G[hn]) ≤ min
i∈[k]
{max

x∈Vi
a(Hx) +

∑
j∈[k], j,i

max
x∈V j
|V(Hx)|}. (3.3)

When G is a complete graph Kn of order n ≥ 2, since any k−proper vertex coloring of Kn is a
colorful neighbor acyclic coloring of Kn, and each color class is colorful neighbor color class.
Theorem 3.1 can be applied to each color class, so it can be obtained

a(Kn[hn]) ≤ min
i∈[n]
{a(Hi) +

∑
j∈[n], j,i

|V(H j)|}. (3.4)

This upper bound is tight, see the Theorem 3.2.
About the acyclic coloring of the joins of any two simple graphs G and H, we have

a(G ∨ H) = min{a(G) + |V(H)|, a(H) + |V(G)|}. (3.5)

By using the above formula and mathematical induction, more general results can be obtained. See
Theorem 3.2 for details.

Theorem 3.2. For any integer n ≥ 2,

a(Kn[hn]) = min
i∈[n]
{a(Hi) +

∑
j∈[n], j,i

|V(H j)|}. (3.6)

Proof. We argue by induction on the number of vertices of Kn. First of all, the result is valid for
the case when n=2.

a(K2[h2]) = min{a(H1) + |V(H2)|, a(H2) + |V(H1)}. (3.7)

That is, when n = 2, the theorem is valid.
Assume that n = p, the conclusion of the theorem holds, i.e.

a(Kp[hp]) = min
i∈[p]
{a(Hi) +

∑
j∈[p], j,i

|V(H j)|}. (3.8)

We need to prove that the theorem is valid when n = p + 1. When n = 2, since Kp+1[hp+1] = Kp[hp] ∨
Hp+1, according to the above formula,

a(Kp+1[hp+1]) = a(Kp[hp] ∨ Hp+1)

= min{a(Kp[hp]) + |V(Hp+1)|, a(Hp+1) +
∑
j∈[p]

|V(H j)|}

= min{min
i∈[p]
{a(Hi) +

∑
j∈[p+1], j,i

|V(H j)|}, a(Hp+1) +
∑
j∈[p]

|V(H j)|}

= min
i∈[p+1]

{a(Hi) +
∑

j∈[p+1], j,i

|V(H j)|}.
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According to the principle of mathematical induction, the conclusion of the theorem holds.
In Theorem 3.1, if each Hi of hn = (Hx)x∈V(G) isomorphic to H, we can get the upper bound of the

acyclic chromatic number of the lexicographic product of G and H, in Corollary 3.1.

Corollary 3.1. Let G and H be two graphs. If G exists k−colorful neighbor acyclic coloring, then

a(G[H]) ≤ a(H) + (k − 1)|V(H)|. (3.9)

When every Hi in hn = (Hx)x∈V(G) is an m−order graph and the acyclic chromatic number is r, we
can get the acyclic chromatic number of the generalized lexicographic product Cn[hn], see Theorem 3.3
for details.

Theorem 3.3. Let Cn be a cycle where n ≥ 4, and hn = (Hx)x∈V(Pn) be a disjoint graph sequence
where every Hi is an m−order graph and the acyclic chromatic number is r. If n is even and n ≥ 2m+2,
then a(Cn[hn]) ≤ 2m + 1. If n is odd, then a(Cn[hn]) ≤ 2m + r.

Proof. Let Cn = x1x2 · · · xnx1, and denote G̃ = C5[h5]. Since if n ≥ 4, Cn exists 3−colorful neighbor
acyclic coloring, it can be obtained according to Theorem 3.1, a(G̃) ≤ 2m + r. Thus, if n is odd, we
have a(Cn[hn]) ≤ 2m + r.

If n is even and n ≥ 2m + 2. Let σG = (V1,V2) be a acyclic coloring of Cn where V1 = {xi|(i)2 = 0},
V2 = {xi|(i)2 = 1}. To prove a(G̃) ≤ 2m + 1. Construct a coloring σ of G̃ as follows: Let C1 =

{0, 1, . . . ,m}, C2 = {m + 1,m + 2, . . . , 2m}. If xi ∈ V1, use the color set C1/{(i/2)m+1} to color every Hxi .
If xi ∈ V2, use the color set C2 to color every Hxi . In particular, different vertices of every Hxi are in
different colors. It is easy to prove that σ is a (2m + 1)-acyclic coloring of G̃. Thus, if n is even and
n ≥ 2m + 2, we have a(Cn[hn]) ≤ 2m + 1.

For the upper bound of acyclic chromatic number of generalized lexicographic product G[hn],
where the acyclic chromatic number of G is k but G does not exist k−colorful neighbor acyclic coloring,
see Theorem 3.4.

Theorem 3.4. Let σG = (V1,V2, . . . ,Vk) be a acyclic coloring of G, then

a(G[hn]) ≤
∑
i∈[k]

max
x∈Vi
|V(Hx)|. (3.10)

Proof. Denote G̃ = G[hn], pi = max
x∈Vi
|V(Hx)|, where i ∈ [k]. Let σ1 be a qi−vertex coloring of⋃

x∈Vi

Hx, and different vertices of every Hx are in different colors, where i ∈ [k]. Construct a

(
∑

i∈[k]
pi)−coloring σ of G̃ as follows:

σ((x, y)) = (σG(x), σ1(y)). (3.11)

It is easy to prove that σ is a proper vertex coloring G̃. As a matter of fact, since different vertices
of every Hx are in different color, and for any xi0 xi1 ∈ E(G), we have the color set Hxi0

is disjoint with
Hxi1

. Any cycle of G̃ is not bicolored. Therefore, σ is a (
∑

i∈[k]
pi)−acyclic coloring of G̃.

The upper bound of Theorem 3.4 is tight, such as when every Hi of hn = (Hx)x∈V(G) has m vertices,
the acyclic chromatic number of Pn[hn] is 2m, see Theorem 3.5 for details.
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Theorem 3.5. Let Pn be a path where n ≥ 4, and hn = (Hx)x∈V(Pn) be a disjoint graph sequence
where every Hi is an m−order graph. Then, a(Pn[hn]) = 2m.

Proof. Let Pn = x1x2 · · · xn, and denote G̃ = Pn[hn]. Since Pn exists 2−acyclic coloring, according
to Theorem 3.4, a(G̃) ≤ 2m. To prove a(G̃) ≥ 2m. Assume a(G̃) ≤ 2m−1, and σ0 is a (2m−1)−acyclic
coloring of G̃. Obviously, for any i = 1, 2, · · · , n, a(Hxi) ≤ |CV(Hxi )| ≤ m. For any j = 1, 2, · · · , n − 1,
CV(Hx j ) ∩ CV(Hx j+1 ) = ∅, and only one of the two equations |CV(Hx j )| = m and |CV(Hx j+1 )| = m is true.
According to whether |CV(Hx2 )| = m is true or not, it can be divided into the following two cases:

Case 12. |CV(Hx2 )| < m. It is easy to prove that |CV(Hx1 )| = |CV(Hx3 )| = m and CV(Hx1 ) ∩ CV(Hx3 ) = ∅.
Therefore, the three sets CV(Hx1 ), CV(Hx2 ) and CV(Hx3 ) are pairwise disjoint. Thus, the acyclic coloring σ0

of G̃ needs at least 2m + a(Hx2) colors, which contradicts the definition of σ0.
Case 13. |CV(Hx2 )| = m. At this time, |CV(Hx3 )| ≥ a(Hx3). Then, CV(Hx3 ) ∩ CV(Hx4 ) = ∅ and CV(Hx2 ) ∩

CV(Hx4 ) = ∅. Thus, three sets CV(Hx2 ), CV(Hx3 ) and CV(Hx4 ) are pairwise disjoint. Therefore, the acyclic
coloring σ0 of G̃ needs at least 2m + a(Hx3) colors, which contradicts the definition of σ0.

Thus, a(G̃) ≥ 2m. Then, a(G̃) = 2m.

4. Conclusions

In this paper, we mainly study the star and acyclic coloring of generalized lexicographic product
of graphs. we present upper bound for the star and acyclic chromatic numbers of the generalized
lexicographic product G[hn] of graph G and disjoint graph sequence hn, where G exists a k−colorful
neighbor star coloring or k−colorful neighbor acyclic coloring.

In addition, we obtain the exact value of the star chromatic numbers of the generalized
lexicographic product of complete graph, path, cycle and special disjoint graph sequences. And we
also obtain the exact value of the acyclic chromatic numbers of the generalized lexicographic product
of complete graph, path and special disjoint graph sequence. These exact values can prove that the
upper bounds we get are tight.

According to Theorem 2.2 and Theorem 2.4, the star chromatic number of the generalized
lexicographic product of complete graph and disjoint graph sequence of the same order with star
chromatic number and acyclic chromatic number is equal to its acyclic chromatic number. On this
basis, we put forward the following problem to be solved:

What condition does the graph G satisfy if χs(G[hn]) = a(G[hn])?
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