Research article Special Issues

Meshfree numerical integration for some challenging multi-term fractional order PDEs

  • Received: 08 March 2022 Revised: 03 May 2022 Accepted: 06 May 2022 Published: 30 May 2022
  • MSC : 35G31, 35G35, 65D12

  • Fractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grünwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using $ L_\infty $-norm. Stability and convergence analysis are also discussed.

    Citation: Abdul Samad, Imran Siddique, Fahd Jarad. Meshfree numerical integration for some challenging multi-term fractional order PDEs[J]. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785

    Related Papers:

  • Fractional partial differential equations (PDEs) have key role in many physical, chemical, biological and economic problems. Different numerical techniques have been adopted to deal the multi-term FPDEs. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative and Grünwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy of the suggested scheme is analyzed by using $ L_\infty $-norm. Stability and convergence analysis are also discussed.



    加载中


    [1] M. Abbaszadeh, M. Dehghan, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate, Numer. Algorithms, 75 (2017), 173–211. https://doi.org/10.1007/s11075-016-0201-0 doi: 10.1007/s11075-016-0201-0
    [2] S. Qin, F. Liu, I. Turner, V. Veghc, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018
    [3] V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616–624. https://doi.org/10.1016/j.mcm.2009.11.002 doi: 10.1016/j.mcm.2009.11.002
    [4] Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561–581. https://doi.org/10.1016/j.advwatres.2009.01.008 doi: 10.1016/j.advwatres.2009.01.008
    [5] E. Bazhlekova, I. Bazhlekov, Subordination approach to multi-term time-fractional diffusion-wave equations, J. Comput. Appl. Math., 339 (2018), 179–192. https://doi.org/10.1016/j.cam.2017.11.003 doi: 10.1016/j.cam.2017.11.003
    [6] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389 (2012), 1117–1127. https://doi.org/10.1016/j.jmaa.2011.12.055 doi: 10.1016/j.jmaa.2011.12.055
    [7] S. Shen, F. Liu, V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math., 345 (2019), 515–534. https://doi.org/10.1016/j.cam.2018.05.020 doi: 10.1016/j.cam.2018.05.020
    [8] Y. Zhao, Y. Zhang, F. Liu, I. Turner, D.Y. Shi, Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation, Appl. Math. Model., 40 (2016), 8810–8825. https://doi.org/10.1016/j.apm.2016.05.039 doi: 10.1016/j.apm.2016.05.039
    [9] X. Tian, S. Y. Reutskiy, Z. J. Fu, A novel meshless collocation solver for solving multi-term variable-order time fractional PDEs, Eng. Comput., 2021, 1–12.
    [10] M. Cai, C. Li, On Riesz derivative, Fract. Calc. Appl. Anal., 22 (2019), 287–301. https://doi.org/10.1007/s00366-021-01298-7
    [11] M. Cai, C. Li, Theory and numerical approximations of fractional integrals and derivatives, SIAM, 2019. https://doi.org/10.1515/fca-2019-0019
    [12] H. Ding, C. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71 (2017), 759–784.
    [13] H. Ding, C. Li, Y. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys., 293 (2015), 218–237. https://doi.org/10.1007/s10915-016-0317-3 doi: 10.1007/s10915-016-0317-3
    [14] M. M. A. Khater, S. K. Elagan, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, N. A. Alshehri, Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Commun. Theor. Phys., 73 (2021), 095003.
    [15] M. M. A. Khater, D. Lu, Analytical versus numerical solutions of the nonlinear fractional time-space telegraph equation, Mod. Phys. Lett. B, 35 (2021) 2150324. https://doi.org/10.1088/1572-9494/ac049f
    [16] R. A. M. Attia, J. Tian, D. Lu, J. F. G. Aguilar, M. M. A. Khater, Unstable novel and accurate soliton wave solutions of the nonlinear biological population model, Arab J. Basic Appl. Sci., 29 (2022), 19–25. https://doi.org/10.1142/S0217984921503243 https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243
    [17] V. Daftardar-Gejji, S. Bhalekar, Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method, Appl. Math. Comput., 202 (2008), 113–120. https://doi.org/10.1016/j.amc.2008.01.027 doi: 10.1016/j.amc.2008.01.027
    [18] M. A. Jafari, A. Aminataei, An algorithm for solving multi-term diffusion-wave equations of fractional order, Comput. Math. Appl., 62 (2011), 1091–1097. https://doi.org/10.1016/j.camwa.2011.03.066 doi: 10.1016/j.camwa.2011.03.066
    [19] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 16 (2013), 9–25. https://doi.org/10.2478/s13540-013-0002-2 doi: 10.2478/s13540-013-0002-2
    [20] A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060
    [21] J. Ren, Z. Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, East Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
    [22] M. Dehghan, M. Safarpoor, M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math., 290 (2015), 174–195. https://doi.org/10.1016/j.cam.2015.04.037 doi: 10.1016/j.cam.2015.04.037
    [23] M. Abbaszadeh, Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation, Appl. Math. Lett., 88 (2019), 179–185. https://doi.org/10.1016/j.aml.2018.08.024 doi: 10.1016/j.aml.2018.08.024
    [24] M. Abbaszadeh, M. Dehghan, Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method, Appl. Numer. Math., 145 (2019), 488–506. https://doi.org/10.1016/j.apnum.2019.05.005 doi: 10.1016/j.apnum.2019.05.005
    [25] M. Dehghan, M. Abbaszadeh, Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119 (2017), 51–66.
    [26] M. Dehghan, M. Abbaszadeh, An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations, Appl. Numer. Math., 131 (2018), 190–206. https://doi.org/10.1016/j.apnum.2018.04.009 doi: 10.1016/j.apnum.2018.04.009
    [27] H. Chen, S. Lü, W. Chen, A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, J. Comput. Appl. Math., 330 (2018), 380–397. https://doi.org/10.1016/j.cam.2017.09.011 doi: 10.1016/j.cam.2017.09.011
    [28] F. Safari, W. Chen, Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion wave equations, Comput. Math. Appl., 78 (2019), 1594–1607. https://doi.org/10.1016/j.camwa.2019.02.001 doi: 10.1016/j.camwa.2019.02.001
    [29] J. Huang, J. Zhang, S. Arshad, Y. Tang, A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations, Appl. Nume. Math., 159 (2021), 159–173. https://doi.org/10.1016/j.apnum.2020.09.003 doi: 10.1016/j.apnum.2020.09.003
    [30] Z. J. Fu, S. Reutskiy, H. G. Sun, J. Ma, M. A. Khan, A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains, Appl. Math. Lett., 94 (2019), 105–111.
    [31] Q. Xi, Z. J. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass Tran., 180 (2021), 121778. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778
    [32] H. Wendland, Approximation scattered data, Press Cambridge University, Cambridge, 2005.
    [33] P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327. https://doi.org/10.3390/math6120327 doi: 10.3390/math6120327
    [34] C. C. Piret, E. Hanert, A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238 (2013), 71–81. https://doi.org/10.1016/j.jcp.2012.10.041 doi: 10.1016/j.jcp.2012.10.041
    [35] V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
    [36] I. Ahmad, Mehnaz, S. Islam, S. Zaman, Local meshless differential quadrature collocation method for time-fractional PDEs, Discrete Cont. Dyn.-S, 2018. https://doi.org/10.3934/dcdss.2020223
    [37] A. Samad, J. Muhammad, Meshfree collocation method for higher order KdV equations, J. Appl. Comput. Mech., 7 (2021), 422–431.
    [38] S. Islam, S. Haq, A. Ali, A meshfree method for the numerical solution of the RLW equation, J. Comput. Appl. Math., 223 (2009), 997–1012.
    [39] Q. Shen, Local RBF-based differential quadrature collocation method for the boundary layer problems, Eng. Anal. Boundary Elem., 34 (2010), 213–228. https://doi.org/10.1016/j.enganabound.2009.10.004 doi: 10.1016/j.enganabound.2009.10.004
    [40] S. Islam, I. Ahmad, A comparative analysis of local meshless formulation for multi-asset option models, Eng. Anal. Boundary Elem., 65 (2016), 159–176.
    [41] P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327. https://doi.org/10.3390/math6120327 doi: 10.3390/math6120327
    [42] S. Wei, W. Chen, Y. C. Hon, Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations, Therm. Sci., 19 (2015), S59–S67, . https://doi.org/10.2298/TSCI15S1S59W doi: 10.2298/TSCI15S1S59W
    [43] G. E. Fasshauer, Meshfree approximation methods with matlab, Word Scientific Publishing Co. Pte. Ltd, 2007.
    [44] G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insur. Math. Econ., 42 (2008), 271–287. https://doi.org/10.1016/j.insmatheco.2007.03.001 doi: 10.1016/j.insmatheco.2007.03.001
    [45] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164.
    [46] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [47] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010), 200–218. https://doi.org/10.1016/j.apm.2009.04.006 doi: 10.1016/j.apm.2009.04.006
    [48] Z. Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [49] H. Jalalinejad, A. Tavakoli, F. Zarmehi, A simple and flexible modification of Grünwald-Letnikov fractional derivative in image processing, Math. Sci., 12 (2018), 205–210. https://doi.org/10.1007/s40096-018-0260-6 doi: 10.1007/s40096-018-0260-6
    [50] S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), 383–403.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1261) PDF downloads(75) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog