Q-calculus plays an extremely important role in mathematics and physics, especially in quantum physics, spectral analysis and dynamical systems. In recent years, many scholars are committed to the research of nonlinear quantum difference equations. However, there are few works about the nonlinear $ q- $difference equations with $ p $-Laplacian. In this paper, we investigate the solvability for nonlinear second-order quantum difference equation boundary value problem with one-dimensional $ p $-Laplacian via the Leray-Schauder nonlinear alternative and some standard fixed point theorems. The obtained theorems are well illustrated with the aid of two examples.
Citation: Changlong Yu, Jing Li, Jufang Wang. Existence and uniqueness criteria for nonlinear quantum difference equations with $ p $-Laplacian[J]. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
Q-calculus plays an extremely important role in mathematics and physics, especially in quantum physics, spectral analysis and dynamical systems. In recent years, many scholars are committed to the research of nonlinear quantum difference equations. However, there are few works about the nonlinear $ q- $difference equations with $ p $-Laplacian. In this paper, we investigate the solvability for nonlinear second-order quantum difference equation boundary value problem with one-dimensional $ p $-Laplacian via the Leray-Schauder nonlinear alternative and some standard fixed point theorems. The obtained theorems are well illustrated with the aid of two examples.
[1] | F. H. Jackson, On $q$-difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[2] | F. H. Jackson, On $q$-functions and a certain difference operator, Earth Env. Sci. Trans. Roy. Soc. Edin., 46 (1909), 253–281. http://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[3] | R. D. Carmichael, The general theory of linear $q$-difference equations, Amer. J. Math., 34 (1912), 147–168. https://doi.org/10.2307/2369887 doi: 10.2307/2369887 |
[4] | T. E. Mason, On properties of the solutions of linear $q$-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216 |
[5] | C. R. Adams, On the linear ordinary $q$-difference equation, Ann. Math., 30 (1928), 195–205. https://doi.org/10.2307/1968274 doi: 10.2307/1968274 |
[6] | D. N. Page, Information in black hole radiation, Phys. Rev. Lett., 71 (1993), 3743–3746. https://doi.org/10.1103/PhysRevLett.71.3743 doi: 10.1103/PhysRevLett.71.3743 |
[7] | D. Youm, $q$-Deformed conformal quantum mechanics, Phys. Rev. D, 62 (2000), 276–284. https://doi.org/10.1103/PhysRevD.62.095009 doi: 10.1103/PhysRevD.62.095009 |
[8] | A. Lavagno, P. N. Swamy, $q$-Deformed structures and nonextensive statistics: a comparative study, Physica A, 305 (2002), 310–315. https://doi.org/10.1016/S0378-4371(01)00680-X doi: 10.1016/S0378-4371(01)00680-X |
[9] | V. Kac, P. Cheung, Quantum calculus, 1 Eds., New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[10] | M. EL-Shahed, H. A. Hassan, Positive solutions of $q$-difference equation, Proc. Amer. Math. Soc., 138 (2010), 1733–1738. https://doi.org/10.1090/S0002-9939-09-10185-5 doi: 10.1090/S0002-9939-09-10185-5 |
[11] | B. Ahmad, Boundary value problems for nonlinear third-order $q$-difference equations, Electronic Journal of Differential Equations, 2011 (2011), 1–7. |
[12] | B. Ahmad, J. J. Nieto, On nonlocal boundary value problem of nonlinear $q$-difference equations, Adv. Differ. Equ., 2012 (2012), 81. https://doi.org/10.1186/1687-1847-2012-81 doi: 10.1186/1687-1847-2012-81 |
[13] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, A study of sencond-order $q$-difference equations with bounday conditions, Adv. Differ. Equ., 2012 (2012), 35. https://doi.org/10.1186/1687-1847-2012-35 doi: 10.1186/1687-1847-2012-35 |
[14] | B. Ahmad, J. J. Nieto, Basic theory of nonlinear third-order $q$-difference equations and inclusions, Math. Model. Anal., 18 (2013), 122–135. https://doi.org/10.3846/13926292.2013.760012 doi: 10.3846/13926292.2013.760012 |
[15] | C. Yu, J. Wang, Existence of solutions for nonlinear second-order $q$-difference equations with first-order $q$-derivatives, Adv. Differ. Equ., 2013 (2013), 124. https://doi.org/10.1186/1687-1847-2013-124 doi: 10.1186/1687-1847-2013-124 |
[16] | R. P. Agarwal, G. Wang, B. Ahmad, L. Zhang, A. Hobiny, S. Monaquel, On existence of solutions for nonlinear $q$-difference equations with nonlocal $q$-integral boundary conditions, Math. Model. Anal., 20 (2015), 604–618. https://doi.org/10.3846/13926292.2015.1088483 doi: 10.3846/13926292.2015.1088483 |
[17] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282 |
[18] | J. Tariboon, S. K. Ntouyas, Nonlinear second-order impulsive $q$-difference Langevin equation with boundary conditons, Bound. Value Probl., 2014 (2014), 85. https://doi.org/10.1186/1687-2770-2014-85 doi: 10.1186/1687-2770-2014-85 |
[19] | C. Yu, J. Wang, Y. Guo, Existence of solutions for nonlinear impulsive $q_{k}$-difference equations with first-order $q_{k}$-derivatives, J. Nonlinear Sci. Appl., 9 (2016), 2615–2630. https://doi.org/10.22436/jnsa.009.05.58 doi: 10.22436/jnsa.009.05.58 |
[20] | R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060 |
[21] | R. A. C. Ferreira, Nontrivial solutions for fractional $q$-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 70 (2010), 1–10. https://doi.org/10.14232/ejqtde.2010.1.70 doi: 10.14232/ejqtde.2010.1.70 |
[22] | R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012 |
[23] | J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional $q$-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689. https://doi.org/10.1016/j.amc.2012.03.006 doi: 10.1016/j.amc.2012.03.006 |
[24] | C. Yu, J. Wang, Positive solutions of nonlocal boundary value problem for high-order nonlinear fractional $q$-difference equations, Abstr. Appl. Anal., 2013 (2013), 928147. https://doi.org/10.1155/2013/928147 doi: 10.1155/2013/928147 |
[25] | L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, (Russian), Izv. Akad. Nauk Kirg. SSR, 9 (1945), 7–10. |
[26] | L. E. Bobisud, Steady state turbulent flow with reaction, Rocky Mountain J. Math., 21 (1991), 993–1007. https://doi.org/10.1216/rmjm/1181072925 doi: 10.1216/rmjm/1181072925 |
[27] | M. A. Herrero, J. L. Vazquez, On the propagation properties of a nonlinear degenerate parabolic equation, Commun. Part. Diff. Eq., 7 (1982), 1381–1402. https://doi.org/10.1080/03605308208820255 doi: 10.1080/03605308208820255 |
[28] | D. Anderson, R. Avery, J. Henderson, Existence of solutions for a one dimensional $p-$Laplacian on time-scales, J. Differ. Equ. Appl., 10 (2004), 889–896. https://doi.org/10.1080/10236190410001731416 doi: 10.1080/10236190410001731416 |
[29] | A. Dogan, Positive solutions of a three-point boundary-value problem for the $p-$Laplacian dynamic equation on time-scales, Ukr. Math. J., 72 (2020), 917–934. https://doi.org/10.1007/s11253-020-01832-8 doi: 10.1007/s11253-020-01832-8 |
[30] | G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511526251 |
[31] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2005. https://doi.org/10.1007/978-0-387-21593-8 |
[32] | D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1974. |
[33] | C. Yu, J. Wang, Y. Guo, Positive solutions for nonlinear double impulsive differential equations with $p$-Laplacian on infinite intervals, Bound. Value Probl., 2015 (2015), 147. https://doi.org/10.1186/s13661-015-0409-2 doi: 10.1186/s13661-015-0409-2 |
[34] | J. Q. He, X. L. Song, The uniqueness of solution for a class of fractional order nonlinear systems with p-Laplacian operator, Abstr. Appl. Anal., 2014 (2014), 921209. https://doi.org/10.1155/2014/921209 doi: 10.1155/2014/921209 |
[35] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[36] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |