In this paper, we study a boundary value problem consisting of Hahn integro-difference equation supplemented with four-point fractional Hahn integral boundary conditions. The novelty of this problem lies in the fact that it contains two fractional Hahn difference operators and three fractional Hahn integrals with different quantum numbers and orders. Firstly, we convert the given nonlinear problem into a fixed point problem, by considering a linear variant of the problem at hand. Once the fixed point operator is available, we make use the classical Banach's and Schauder's fixed point theorems to establish existence and uniqueness results. An example is also constructed to illustrate the main results. Several properties of fractional Hahn integral that will be used in our study are also discussed.
Citation: Varaporn Wattanakejorn, Sotiris K. Ntouyas, Thanin Sitthiwirattham. On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions[J]. AIMS Mathematics, 2022, 7(1): 632-650. doi: 10.3934/math.2022040
[1] | Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231 |
[2] | Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham . On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667 |
[3] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[4] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[5] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[6] | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574 |
[7] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[8] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[9] | Chanisara Metpattarahiran, Thitiporn Linitda, Thanin Sitthiwirattham . Existence results of sequential fractional Caputo sum-difference boundary value problem. AIMS Mathematics, 2022, 7(8): 15120-15137. doi: 10.3934/math.2022829 |
[10] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
In this paper, we study a boundary value problem consisting of Hahn integro-difference equation supplemented with four-point fractional Hahn integral boundary conditions. The novelty of this problem lies in the fact that it contains two fractional Hahn difference operators and three fractional Hahn integrals with different quantum numbers and orders. Firstly, we convert the given nonlinear problem into a fixed point problem, by considering a linear variant of the problem at hand. Once the fixed point operator is available, we make use the classical Banach's and Schauder's fixed point theorems to establish existence and uniqueness results. An example is also constructed to illustrate the main results. Several properties of fractional Hahn integral that will be used in our study are also discussed.
The topic of fractional differential equations has gained considerable attention and has evolved as an interesting field of research, mainly due to the fact that the tools of fractional calculus are found to be more practical and effective than the corresponding ones of classical calculus in the mathematical modeling real wold problems. In fact, fractional calculus has numerous applications in various disciplines of science and engineering such as mechanics, chemistry, biology, economics, electricity, control theory, signal and image processing, regular variation in thermodynamics, biophysics, aerodynamics, viscoelasticity and damping, etc. For the basic theory and applications of fractional calculus, as well as for some recent developments in the field we refer to [1]–[9] and the references cited therein.
Many physical phenomena are described by equations involving non-differentiable functions, e.g., generic trajectories of quantum mechanics [10]. The substitution of the classical derivative by a difference operator, which allows to deal with sets of non-differentiable functions, give rise to the so-called quantum calculus. Many different types of quantum difference operators appeared in the literature, for example h-calculus, q-calculus, Hahn's calculus, forward quantum calculus and backward quantum calculus. These operators have applications in orthogonal polynomials, basic hypergeometric functions, combinatorics, the calculus of variations, particle physics, quantum mechanics and the theory of relativity (see [11]–[24] and the references therein for some applications and new results of the quantum calculus).
Recently, many researchers have extensively studied calculus without limit that deals with a set of non-differentiable functions, the so-called quantum calculus. Many types of quantum difference operators are employed in several applications of mathematical areas such as the calculus of variations, particle physics, quantum mechanics and theory of relativity (see [12]–[24] and the references therein for some applications and new results of the quatum calculus).
In this paper, we study the Hahn quantum calculus that is one type of quantum calculus. W. Hahn [25] introduced the Hahn difference operator Dq,ω in 1949 as follow:
Dq,ωf(t)=f(qt+ω)−f(t)t(q−1)+ω,t≠ω0:=ω1−q. |
The Hahn difference operator is a combination of two well-known difference operators, the forward difference operator and the Jackson q-difference operator. Notice that
Dq,ωf(t)=Δωf(t)whenever q=1,Dq,ωf(t)=Dqf(t)whenever ω=0,Dq,ωf(t)=f′(t)whenever q=1,ω→0. |
The Hahn difference operator has been employed to construct families of orthogonal polynomials and investigate some approximation problems (see [26]–[28] and the references therein).
In 2009, K. A. Aldwoah [29,30] defined the right inverse of Dq,ω in the terms of both the Jackson q-integral containing the right inverse of Dq [31] and Nörlund sum contaning the right inverse of Δω [31].
In 2010, A. B. Malinowska and D. F. M. Torres [32,33] introduced the Hahn quantum variational calculus. In 2013, A. B. Malinowska and N. Martins [34] studied the generalized transversality conditions for the Hahn quantum variational calculus. Later, A. E. Hamza and S. M. Ahmed [35,36] studied the theory of linear Hahn difference equations, and investigated the existence and uniqueness results for the initial value problems for Hahn difference equations by using the method of successive approximations. Moreover, they proved Gronwall's and Bernoulli's inequalities with respect to the Hahn difference operator and established the mean value theorems for this calculus. In 2016, A. E. Hamza and S. D. Makharesh [37] investigated the Leibniz's rule and Fubini's theorem associated with Hahn difference operator. In the same year, T. Sitthiwirattham [38] considered a nonlinear Hahn difference equation with nonlocal boundary value conditions. In 2017, U. Sriphanomwan et al. [39] considered a nonlocal boundary value problem for second-order nonlinear Hahn integro-difference equation with integral boundary condition.
In 2010, J. ˇCermˊak and L. Nechvˊatal [40] proposed the fractional (q,h)-difference operator and the fractional (q,h)-integral for q>1. In 2011, ˇCermˊak et al. [41] studied discrete Mittag-Leffler functions in linear fractional difference equations for q>1, and M. R. S. Rahmat [42,43] studied the (q,h)-Laplace transform and some (q,h)-analogues of integral inequalities on discrete time scales for q>1. In 2016, F. Du et al. [44] presented the monotonicity and convexity for nabla fractional (q,h)-difference for q>0,q≠1. However, we realize that Hahn difference operator requires the condition 0<q<1. Therefore, to fill the gap, T. Brikshavana and T. Sitthiwirattham [45] have introduced the fractional Hahn difference operators for 0<q<1.
In quantum calculus, there are apparently few research works related to boundary value problems of fractional Hahn difference equations (see [46]–[48]). Motivated by the above discussion, to fill the gap on contributions concerning boundary value problems of fractional Hahn difference equations, the goal of this paper is to enrich this new research area. So, in this paper, we introduce and study a four-point fractional Hahn integral boundary value problems for fractional Hahn integrodifference equation of the form
Dαq,ωu(t)=F[t,u(t),Ψγr,ρu(t),Υνm,χu(t)],t∈ITq,ω,u(ξ)=ϕ1(u)+λ1Iβ1p1,θ1g1(η1)u(η1),ξ,η1∈ITq,ω−{ω0,T},ξ>η1,u(T)=ϕ2(u)+λ2Iβ2p2,θ2g2(η2)u(η2),η2∈ITq,ω−{ω0,T}, | (1.1) |
where ITq,ω:={qkT+ω[k]q:k∈N0}∪{ω0}; α∈(1,2],β1,β2,γ,ν∈(0,1],ω>0,p1,p2,q,r,m∈(0,1),p1=qa,p2=qb,r=qc,m=qd,a,b,c,d∈N, θ1=ω(1−p11−q),θ2=ω(1−p21−q),ρ=ω(1−r1−q),χ=ω(1−m1−q), λ1,λ2∈R+, F∈C(ITq,ω×R×R×R,R),g1,g2∈C(ITq,ω,R+) and given functions, ϕ1,ϕ2:C(ITq,ω,R)→R are given functionals, and for φ∈C(ITr,ρ×ITr,ρ,[0,∞)) and ψ∈C(ITm,χ×ITm,χ,[0,∞)), we define
Ψγr,ρu(t):=(Iγr,ρφu)(t)=1Γr(γ)∫tω0(t−σr,ρ(s))γ−1_r,ρφ(t,s)u(s)dr,ρs,Υνm,χu(t):=(Dνm,χψu)(t)=1Γm(−ν)∫tω0(t−σm,χ(s))−ν−1_m,χψ(t,s)u(s)dm,χs. |
We emphasize that our problem contains two fractional Hahn difference operators and three fractional Hahn integrals with different quantum numbers and orders. To the authors' best knowledge, this is the new development on the topic as the quantum number and order of the problems studied in the literature are the same.
We aim to show the existence and uniqueness of a solution to the problem (1.1) by using the Banach fixed point theorem, and the existence of at least one solution by using the Schauder's fixed point theorem. In addition, an example is provided to illustrate our results in the last section.
The rest of this paper is organized as follows: We present our existence and uniqueness result in Section 3, and our existence result in Section 4, while Section 2 contains some preliminary concepts related to our problem. An example is constructed to illustrate the main results in Section 5. Finally, Section 6 is a conclusion section.
In this section, we briefly recall some definitions and lemmas used in this research work. In this work, we use the Banach space C=C(ITq,ω,R) of all function u with the norm defined as
‖u‖C=‖u‖+‖Dνm,χu‖, |
where ‖u‖=maxt∈ITq,ω{|u(t)|} and ‖Dνm,χu‖=maxt∈ITm,χ{|Dνm,χu(t)|}.
Let q∈(0,1), ω>0. We define the notations
[n]q:=1−qn1−q=qn−1+…+q+1and[n]q!:=n∏k=11−qk1−q,n∈R. |
The forward jump operator and the backward jump operator are defined as
σkq,ω(t):=qkt+ω[k]q and ρkq,ω(t):=t−ω[k]qqk for k∈N. |
The q-analogue of the power function (a−b)n_q and the q,ω-analogue of the power function (a−b)n_q,ω with n∈N0:=[0,1,2,…],a,b∈R are defined as
(a−b)0_q:=1,(a−b)n_q:=n−1∏k=0(a−bqk),(a−b)0_q,ω:=1,(a−b)n_q,ω:=n−1∏k=0[a−(bqk+ω[k]q)], |
respectively.
In generally, if α∈R, we get
(a−b)α_q=aα∞∏n=01−(ba)qn1−(ba)qα+n,a≠0, |
(a−b)α_q,ω=(a−ω0)α∞∏n=01−(b−ω0a−ω0)qn1−(b−ω0a−ω0)qα+n=((a−ω0)−(b−ω0))α_q,a≠ω0. |
Note that aα_q=aα, (a−ω0)α_q,ω=(a−ω0)α, and (0)α_q=(ω0)α_q,ω=0 for α>0. The q-gamma and q-beta functions are defined as
Γq(x):=(1−q)x−1_q(1−q)x−1,x∈R∖{0,−1,−2,…},Bq(x,s):=∫10tx−1(1−qt)s−1_qdqt=Γq(x)Γq(s)Γq(x+s), |
respectively.
Definition 2.1. For q∈(0,1), ω>0 and f defined on an interval I⊆R which containing ω0:=ω1−q, the Hahn difference of f is defined as
Dq,ωf(t)=f(qt+ω)−f(t)t(q−1)+ωfort≠ω0, |
and Dq,ωf(ω0)=f′(ω0), provided that f is differentiable at ω0. We call Dq,ωf the q,ω-derivative of f, and say that f is q,ω-differentiable on I.
The Hahn difference operator has the following properties:
Lemma 2.1. [30] Let f,g:I→R are q,ω-differentiable on I. Then we have:
(1) Dq,ω[f(t)+g(t)]=Dq,ωf(t)+Dq,ωg(t).
(2) Dq,ω[αf(t)]=αDq,ωf(t).
(3) Dq,ω[f(t)g(t)]=f(t)Dq,ωg(t)+g(qt+ω)Dq,ωf(t).
(4) Dq,ω[f(t)g(t)]=g(t)Dq,ωf(t)−f(t)Dq,ωg(t)g(t)g(qt+ω).
Definition 2.2. Let I be any closed interval of R that contains a,b and ω0. If f:I→R is a given function, we define the q,ω-integral of f from a to b by
∫baf(t)dq,ωt:=∫bω0f(t)dq,ωt−∫aω0f(t)dq,ωt, |
where
∫xω0f(t)dq,ωt:=[x(1−q)−ω]∞∑k=0qkf(xqk+ω[k]q),x∈I, |
and the series converges at x=a and x=b. We say f is q,ω-integrable on [a,b] and the sum to the right hand side of this equation is called the Jackson-Nörlund sum.
Notice that the actual domain of function f is defined on [a,b]q,ω⊂I.
Next, we introduce the fundamental theorem of Hahn calculus.
Lemma 2.2. [29] Let f:I→R be continuous at ω0 and define
F(x):=∫xω0f(t)dq,ωt,x∈I. |
Then, F is continuous at ω0. In addition, Dq,ω0F(x) exists for every x∈I and
Dq,ωF(x)=f(x). |
Conversely,
∫baDq,ωF(t)dq,ωt=F(b)−F(a) for alla,b∈I. |
Lemma 2.3. [38] Let q∈(0,1), ω>0 and f:I→R be continuous at ω0. Then
∫tω0∫rω0x(s)dq,ωsdq,ωr=∫tω0∫tqs+ωx(s)dq,ωrdq,ωs. |
Lemma 2.4. [38] Let q∈(0,1) and ω>0. Then
∫tω0dq,ωs=t−ω0and∫tω0[t−σq,ω(s)]dq,ωs=(t−ω0)21+q. |
Now, we give the definitions of fractioanal Hahn integral and fractional Hahn difference of Riemann-Liouville type, as follows:
Definition 2.3. For α,ω>0,q∈(0,1) and f:ITq,ω→R, the fractional Hahn integral is defined by
Iαq,ωf(t):=1Γq(α)∫tω0(t−σq,ω(s))α−1_q,ωf(s)dq,ωs=[t(1−q)−ω]Γq(α)∞∑n=0qn(t−σn+1q,ω(t))α−1_q,ωf(σnq,ω(t)), |
and (I0q,ωf)(t)=f(t).
Definition 2.4. For α,ω>0,q∈(0,1) and f:ITq,ω→R, the fractional Hahn difference of the Riemann-Liouville type of order α is defined by
Dαq,ωf(t):=(DNq,ωIN−αq,ωf)(t)=1Γq(−α)∫tω0(t−σq,ω(s))−α−1_q,ωf(s)dq,ωs, |
and D0q,ωf(t)=f(t), where N−1≤α≤N,N∈N.
Lemma 2.5. [45] Letting α>0,q∈(0,1),ω>0 and f:ITq,ω→R,
Iαq,ωDαq,ωf(t)=f(t)+C1(t−ω0)α−1+…+CN(t−ω0)α−N, |
for some Ci∈R,i=1,2,…,N and N−1<α≤N,N∈N.
Next, we give some auxiliary lemmas to use in simplifying calculations.
Lemma 2.6. [45] Let α,β>0,p,q∈(0,1) and ω>0,
(i)∫tω0(t−σq,ω(s))α−1_q,ωdq,ωs=(t−ω0)α[α]q,(ii)∫tω0(t−σq,ω(s))α−1_q,ω(s−ω0)β_q,ωdq,ωs=(t−ω0)α+βBq(β+1,α). |
Lemma 2.7. Let α,β,ν>0,n∈N,q,χ∈(0,1),ω,m>0 and χ=ω(1−m1−q). Then,
(i)∫tω0(t−σq,ω(s))β−1_q,ω(s−ω0)α−ndq,ωs=(t−ω0)α+β−nBq(α−n+1,β),(ii)∫tω0(t−σq,ω(s))−ν−1_q,ω(s−ω0)α−ndq,ωs=(t−ω0)α−ν−nBq(α−n+1,−ν),(iii)∫tω0∫xω0(t−σm,χ(x))−ν−1_m,χ(x−σq,ω(s))α−1_q,ωdq,ωsdm,χx=(t−ω0)α−ν[α]qBm(α+1,−ν). |
Proof. From the definition of q,ω-analogue of the power function and Definition 2.3, we obtain
(i)∫tω0(t−σq,ω(s))β−1_q,ω(s−ω0)α−ndq,ωs=(t−ω0)β(1−q)∞∑i=0qi(1−qi+1)β−1_q(qi(t−ω0))α−n=(t−ω0)α+β−n(1−q)∞∑i=0qi(1−qi+1)β−1_qqi(α−n)=(t−ω0)α+β−nBq(α−n+1,β). |
Similarly, we obtain (ii).
(iii)∫tω0∫xω0(t−σm,χ(x))−ν−1_m,χ(x−σq,ω(s))α−1_q,ωdq,ωsdm,χx=∫tω0(t−σm,χ(x))−ν−1_m,χ[∫xω0(x−σq,ω(s))α−1_q,ωdq,ωs]dm,χx=1[α]q∫tω0(t−σm,χ(x))−ν−1_m,χ(x−ω0)αdm,χx=(t−ω0)α−ν[β]qBm(α+1,−ν). |
The following lemma, dealing with a linear variant of problem (1.1), plays an important role in the forthcoming analysis.
Lemma 2.8. Let Ω≠0,ω>0,q∈(0,1),α∈(1,2], and for i=1,2, θi>0,βi∈(0,1], pi∈(0,1),pi=qmi,mi∈N, θi=ω(1−pi1−q), λi∈R+; h∈C(ITq,ω,R),g1,g2∈C(ITq,ω,R+) are given functions, ϕ1,ϕ2:C(ITq,ω,R)→R are given functionals. Then the problem
Dαq,ωu(t)=h(t),t∈ITq,ω,u(ξ)=ϕ1(u)+λ1Iβ1p1,θ1g1(η1)u(η1),ξ,η1∈ITq,ω−{ω0,T},ξ>η1,u(T)=ϕ2(u)+λ2Iβ2p2,θ2g2(η2)u(η2),η2∈ITq,ω−{ω0,T}, | (2.1) |
has the unique solution
u(t)=1Γq(α)∫tω0(t−σq,ω(s))α−1_q,ωh(s)dq,ωs+(t−ω0)α−1Ω(BT,η2Oξ,η1[ϕ1,h]−Bξ,η1OT,η2[ϕ2,h])−(t−ω0)α−2Ω(AT,η2Oξ,η1[ϕ1,h]−Aξ,η1OT,η2[ϕ2,h]), | (2.2) |
where the functionals Oξ,η1[ϕ1,h],OT,η2[ϕ2,h] are defined by
Oξ,η1[ϕ1,h]:=ϕ1(u)−1Γq(α)∫ξω0(ξ−σq,ω(s))α−1_q,ωh(s)dq,ωs+λ1Γq(α)Γp1(β1)×∫η1ω0∫xω0(η1−σp1,θ1(s))β1−1_p1,θ1(x−σq,ω(s))α−1_q,ωg1(x)h(s)dq,ωsdp1,θ1x, | (2.3) |
OT,η2[ϕ2,h]:=ϕ2(u)−1Γq(α)∫Tω0(T−σq,ω(s))α−1_q,ωh(s)dq,ωs+λ2Γq(α)Γp2(β2)×∫η2ω0∫xω0(η2−σp2,θ2(s))β2−1_p2,θ2(x−σq,ω(s))α−1_q,ωg2(x)h(s)dq,ωsdp2,θ2x, | (2.4) |
and the constants Aξ,η1,AT,η2,Bξ,η1,BT,η2 and Ω are defined by
Aξ,η1:=(ξ−ω0)α−1−λ1Γp1(β1)∫η1ω0(η1−σp1,θ1(s))β1−1_p1,θ1g1(s)(s−ω0)α−1dp1,θ1s, | (2.5) |
AT,η2:=(T−ω0)α−1−λ2Γp2(β2)∫η2ω0(η2−σp2,θ2(s))β2−1_p2,θ2g2(s)(s−ω0)α−1dp2,θ2s, | (2.6) |
Bξ,η1:=(ξ−ω0)α−2−λ1Γp1(β1)∫η1ω0(η1−σp1,θ1(s))β1−1_p1,θ1g1(s)(s−ω0)α−2dp1,θ1s, | (2.7) |
BT,η2:=(T−ω0)α−2−λ2Γp2(β2)∫η2ω0(η2−σp2,θ2(s))β2−1_p2,θ2g2(s)(s−ω0)α−2dp2,θ2s, | (2.8) |
Ω:=Aξ,η1BT,η2−AT,η2Bξ,η1. | (2.9) |
Proof. Taking fractional Hahn q,ω-integral of order α to (2.1), we obtain
u(t)=C1(t−ω0)α−1+C2(t−ω0)α−2+1Γq(α)∫tω0(t−σq,ω(s))α−1_q,ωh(x)dq,ωs. | (2.10) |
Next, we take fractional Hahn pi,θi-integral of order βi,i=1,2 to (2.10) to get
Iβipi,θiu(t)=1Γpi(βi)∫tω0(t−σpi,θi(s))βi−1_pi,θi[C1(s−ω0)α−1+C2(s−ω0)α−2]dpi,θis+1Γq(α)Γpi(βi)∫tω0∫xω0(t−σpi,θi(x))βi−1_pi,θi(x−σq,ω(s))α−1_q,ωh(s)dq,ωsdpi,θix. | (2.11) |
Substituting i=1 into (2.11) and employing the first condition of (2.1), we have
Aξ,η1C1+Bξ,η1C2=Oξ,η1[ϕ1,h]. | (2.12) |
Taking i=2 into (2.11) and employing the second condition of (2.1), we have
AT,η2C1+BT,η2C2=OT,η2[ϕ2,h], | (2.13) |
where Oξ,η1,[ϕ1,h],OT,η2[ϕ2,h],Aξ,η1,AT,η2,Bξ,η1,BT,η2 and Ω are defined as (2.3)–(2.9), respectively. The constants C1 and C2 are revealed from solving the system of equations (2.12) and (2.13) as
C1=BT,η2Oξ,η1,[ϕ1,h]−Bξ,η1OT,η2,[ϕ2,h]ΩandC2=Aξ,η1OT,η2,[ϕ2,h]−AT,η2Oξ,η1,[ϕ1,h]Ω. |
Substituting the constants C1,C2 into (2.10), we obtain (2.2).
On the other hand, it's easy to show that (2.2) is the solution of problem (2.1), by taking fractional Hahn q,ω-difference of order α to (2.2), we get (2.1).
In this section, we show the existence and uniqueness result for problem (1.1). In view of Lemma 2.8 we define an operator A:C→C as
(Au)(t):=1Γq(α)∫tω0(t−σq,ω(s))α−1_q,ωF[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωs+(t−ω0)α−1Ω(BT,η2O∗ξ,η1[ϕ1,Fu]−Bξ,η1O∗T,η2[ϕ2,Fu])−(t−ω0)α−2Ω(AT,η2O∗ξ,η1[ϕ1,Fu]−Aξ,η1O∗T,η2[ϕ2,Fu]), | (3.1) |
where the functionals O∗ξ,η1[ϕ1,Fu],O∗T,η2[ϕ2,Fu] are defined by
O∗ξ,η1[ϕ1,Fu]:=ϕ1(u)−1Γq(α)∫ξω0(ξ−σq,ω(s))α−1_q,ωF[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωs+λ1Γq(α)Γp1(β1)∫η1ω0∫xω0(η1−σp1,θ1(s))β1−1_p1,θ1(x−σq,ω(s))α−1_q,ωg1(x)×F[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωsdp1,θ1x, | (3.2) |
O∗T,η2[ϕ2,Fu]:=ϕ2(u)−1Γq(α)∫Tω0(T−σq,ω(s))α−1_q,ωF[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωs+λ2Γq(α)Γp2(β2)∫η2ω0∫xω0(η2−σp2,θ2(s))β2−1_p2,θ2(x−σq,ω(s))α−1_q,ωg2(x)×F[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωsdp2,θ2x, | (3.3) |
and the constants Aξ,η1,AT,η2,Bξ,η1,BT,η2 and Ω are defined by (2.5)–(2.9), respectively.
Obviously the problem (1.1) has solutions if and only if the operator A has fixed points.
Theorem 3.1. Assume that F:ITq,ω×R×R×R→R is continuous, φ:ITr,ρ×ITr,ρ→[0,∞), ψ:ITm,χ×ITm,χ→[0,∞) are continuous with φ0=max{φ(t,s):(t,s)∈ITr,ρ×ITr,ρ} and ψ0=max{ψ(t,s):(t,s)∈ITm,χ×ITm,χ}. In addition, assume that the following conditions hold:
(H1) There exist positive constants ℓ1,ℓ2,ℓ3, such that for each t∈ITq,ω and ui,vi∈R,i=1,2,3,
|F[t,u1,u2,u3]−F[t,v1,v2,v3]|≤ℓ1|u1−v1|+ℓ2|u2−v2|+ℓ3|u3−v3|. |
(H2) There exist positive constants τ1,τ2, such that for each u,v∈C,
|ϕ1(u)−ϕ1(v)|≤τ1‖u−v‖C and |ϕ2(u)−ϕ2(v)|≤τ2‖u−v‖C. |
(H3) There exist positive constants gi,Gi,i=1,2, such that for each t∈ITq,ω,
gi<gi(t)<Gi. |
(H4)Ξ:=LX+τ1Θ∗T,η2+τ2Θ∗ξ,η1<1,
where
L:=ℓ1+ℓ2φ0(T−ω0)γΓr(γ+1)+ℓ3ψ0(T−ω0)−νΓm(1−ν), | (3.4) |
X:=[(T−ω0)αΓq(α+1)+(T−ω0)α−νΓm(α−ν+1)+Φξ,η1Θ∗T,η2+ΦT,η2Θ∗ξ,η1], | (3.5) |
Φξ,η1:=1Γq(α+1)[(ξ−ω0)α+λ1G1(η1−ω0)α+β1Γp1(α+1)Γp1(α+β1+1)], | (3.6) |
ΦT,η2:=1Γq(α+1)[(T−ω0)α+λ2G2(η2−ω0)α+β2Γp2(α+1)Γp2(α+β2+1)], | (3.7) |
Θ∗ξ,η1:=Θξ,η1+¯Θξ,η1, | (3.8) |
Θ∗T,η2:=ΘT,η2+¯ΘT,η2, | (3.9) |
Θξ,η1:=1min|Ω|[(T−ω0)α−1max|Bξ,η1|+(T−ω0)α−2max|Aξ,η1|], | (3.10) |
¯Θξ,η1:=1min|Ω|[(T−ω0)α−ν−1Γm(α)Γm(α−ν)max|Bξ,η1|+(T−ω0)α−ν−2Γm(α−1)Γm(α−ν−1)max|Aξ,η1|], | (3.11) |
ΘT,η2:=1min|Ω|[(T−ω0)α−1max|BT,η2|+(T−ω0)α−2max|AT,η2|], | (3.12) |
¯ΘT,η2:=1min|Ω|[(T−ω0)α−ν−1Γm(α)Γm(α−ν)max|BT,η2|+(T−ω0)α−ν−2Γm(α−1)Γm(α−ν−1)max|AT,η2|]. | (3.13) |
Then problem (1.1) has a unique solution in ITq,ω.
Proof. For each t∈ITr,ρ, we have
|Ψγr,ρu(t)−Ψγr,ρv(t)|≤ϕ0Γr(γ)∫tω0(t−σr,ρ(s))γ−1_r,ρ|u(s)−v(s)|dr,ρs≤ϕ0Γr(γ)‖u−v‖∫Tω0(T−σr,ρ(s))γ−1_r,ρdr,ρs=ϕ0(T−ω0)γΓr(γ+1)‖u−v‖. |
Similarly, for each t∈ITm,χ, we obtain
|Υνm,χu(t)−Υνm,χv(t)|≤ψ0(T−ω0)−νΓm(1−ν)‖u−v‖. |
To show that F is contraction, we denote that
F|u−v|(t):=|F[t,u(t),Ψγr,ρu(t),Υνm,χu(t)]−F[t,v(t),Ψγr,ρv(t),Υνm,χv(t)]|, |
for each t∈ITq,ω and u,v∈C. We find that
|O∗ξ,η1[ϕ1,Fu]−O∗ξ,η1[ϕ1,Fv]|≤|ϕ1(u)−ϕ1(v)|+1Γq(α)∫ξω0(ξ−σq,ω(s))α−1_q,ωF|u−v|(s)dq,ωs+λ1Γq(α)Γp1(β1)×∫η1ω0∫xω0(η1−σp1,θ1(s))β1−1_p1,θ1(x−σq,ω(s))α−1_q,ωg1(x)F|u−v|(s)dq,ωsdp1,θ1x≤τ1‖u−v‖C+(ℓ1|u−v|+ℓ2|Ψγr,ρu−Ψγr,ρ|+ℓ3|Dνm,χu−Dνm,χv|)1Γq(α+1)×[(ξ−ω0)α+λ1G1(η1−ω0)α+β1Γp1(α+1)Γp1(α+β1+1)]≤τ1‖u−v‖C+[ℓ1+ℓ2φ0(T−ω0)γΓr(γ+1)+ℓ3ψ0(T−ω0)−νΓr(1−ν)]‖u−v‖Φξ,η1≤[τ1+LΦξ,η1]‖u−v‖C. | (3.14) |
Similarly, we get
|O∗T,η2[ϕ2,Fu]−O∗T,η2[ϕ2,Fv]|≤[τ2+LΦT,η2]‖u−v‖C. | (3.15) |
Next, we have
|(Au)(t)−(Av)(t)|≤1Γq(α)∫Tω0(T−σq,ω(s))α−1_q,ωF|u−v|(s)dq,ωs+(T−ω0)α−1|Ω|×+{|BT,η2||O∗ξ,η1[ϕ1,Fu]−O∗ξ,η1[ϕ1,Fv]|+|Bξ,η1||O∗T,η2[ϕ2,Fu]−O∗T,η2[ϕ2,Fv]|}+(T−ω0)α−2|Ω|{|AT,η2||O∗ξ,η1[ϕ1,Fu]−O∗ξ,η1[ϕ1,Fv]|+|Aξ,η1|×|O∗T,η2[ϕ2,Fu]−O∗T,η2[ϕ2,Fv]|}≤[L(T−ω0)αΓq(α+1)+[τ1+LΦξ,η1]min|Ω|{max|BT,η2|(T−ω0)α−1+max|AT,η2|(T−ω0)α−2}+[τ2+LΦT,η2]min|Ω|{max|Bξ,η1|(T−ω0)α−1+max|Aξ,η1|(T−ω0)α−2}]‖u−v‖C={L[(T−ω0)αΓq(α+1)+Φξ,η1ΘT,η2+ΦT,η2Θξ,η1]+τ1ΘT,η2+τ2Θξ,η1}‖u−v‖C. | (3.16) |
Taking fractional Hahn m,χ-difference of order ν to (3.1), we obtain
(Dνm,χAu)(t)=1Γq(α)Γm(−ν)∫tω0∫xω0(t−σm,χ(x))−ν−1_m,χ(x−σq,ω(s))α−1_q,ω×F[s,u(s),Ψγr,ρu(s),Υνm,χu(s)]dq,ωsdm,χx+1ΩΓm(−ν)×(BT,η2O∗ξ,η1[ϕ1,Fu]−Bξ,η1O∗T,η2[ϕ2,Fu])∫tω0(t−σm,χ(s))−ν−1_m,χ(s−ω0)α−1dm,χs−1ΩΓm(−ν)(AT,η2O∗ξ,η1[ϕ1,Fu]−Aξ,η1O∗T,η2[ϕ2,Fu])×∫tω0(t−σm,χ(s))−ν−1_m,χ(s−ω0)α−2dm,χs. | (3.17) |
By the same expression as above, we obtain
|(Dm,χνAu)(t)−(Dνm,χAv)(t)|<{L[(T−ω0)α−νΓm(α+1)Γm(α−ν+1)Γq(α+1)+Φξ,η1¯ΘT,η2+ΦT,η2¯Θξ,η1]+τ1¯ΘT,η2+τ2¯Θξ,η1}×‖u−v‖C. | (3.18) |
From (3.16) and (3.18), we get
‖Au−Av‖C≤[LX+τ1Θ∗T,η2+τ2Θ∗ξ,η1]‖u−v‖C=Ξ‖u−v‖C. |
By (H_4) and Banach fixed point theorem, we get that {\mathcal{A}} is a contraction and hence {\mathcal{A}} has a fixed point. Consequently problem (1.1) has a unique solution of on I^T_{q, \omega} .
In this section, we prove an existence result for the problem (1.1) via Schauder's fixed point theorem.
Lemma 4.1. [49] (Schauder's fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex subset of D , and T: D\rightarrow D be the map such that the set Tu:u\in U is relatively compact in D . Then the operator T has at least one fixed point u^*\in U : Tu^* = u^*.
Theorem 4.1. Suppose that (H_1) , (H_3) and (H_4) hold. Then, problem (1.1) has at least one solution on I^T_{q, \omega} .
Proof. The proof is organized into three steps as follows:
Step I. {\mathcal{A}} maps bounded sets into bounded sets in B_R = \{u \in \mathcal{C}: \|u\|_{\mathcal{C}} \leq R\} . Let \; \max\limits_{t\in I^T_{q, \omega}}|F(t, 0, 0, 0)| = M, \; \sup\limits_{u\in {\mathcal{C}}} |\phi_i(u)| = N_i, \; i = 1, 2 and choose a constant
\begin{equation} R\geq \frac{ M\mathcal{X}+ N_1\Theta^*_{T,\eta_2} +N_2 \Theta^*_{\xi,\eta_1} }{1-{\mathcal{L}}{\mathcal{X}}}. \end{equation} | (4.1) |
Letting
\big|\mathcal{F}(t,u,0)\big| = \bigg|F\big[t,u(t),\Psi_{r,\rho}^\gamma u(t),\Upsilon_{m,\chi}^\nu u(t) \big]-F\big[t,0,0,0\big]\bigg|+\big|F\big[t,0,0,0\big]\big| |
for each t\in I_{q, \omega}^T and u\in B_{R} , we obtain
\begin{align} &\Big|{\mathcal{O}_{\xi,\eta_1}^*[\phi_1,F_u]} \Big|\\ \leq\; &N_1+ \frac{1}{\Gamma_q(\alpha)} \int_{\omega_0}^{\xi} \left(\xi-\sigma_{q,\omega}(s) \right)_{q,\omega}^{\underline{\alpha-1}}\,\big|\mathcal{F}(s,u,0)\big|\,d_{q,\omega}s\\ +&\frac{\lambda_1}{\Gamma_q(\alpha)\Gamma_{p_1}(\beta_1)}\int_{\omega_0}^{\eta_1}\int_{\omega_0}^{x}\left(\eta_1-\sigma_{p_1,\theta}(s) \right)_{p_1,\theta}^{\underline{\beta_1-1}} \left(x-\sigma_{q,\omega}(s) \right)_{q,\omega}^{\underline{\alpha-1}}g_1(x)\big|\mathcal{F}(s,u,0)\big|\,d_{q,\omega}s\,d_{p_1,\theta}x\\ \leq\; &N_1+ \Bigg( \left[ \ell_1+\ell_2\varphi_0\frac{(T-\omega_0)^{\gamma}}{\Gamma_r(\gamma+1)} +\ell_3\psi_0\frac{(T-\omega_0)^{-\nu}}{\Gamma_r(1-\nu)} \right]\|u\| +M\Bigg)\,\Phi_{\xi,\eta_1}\\ \leq\; &N_1+ \big( {\mathcal{L}}\|u\|_{\mathcal{C}}+M\big)\,\Phi_{\xi,\eta_1}. \end{align} | (4.2) |
Similarly,
\begin{align} \Big|{\mathcal{O}_{T,\eta_2}^*[\phi_2,F_u]} \Big| \leq N_2+ \big( {\mathcal{L}}\|u\|_{\mathcal{C}}+M\big)\,\Phi_{T,\eta_2}. \end{align} | (4.3) |
Then, we have
\begin{align} \big| ({\mathcal{A}}u)(t)\big| \leq\; &\big(\mathcal{L} \|u\|_{\mathcal{C}}+M\big)\left[ \frac{(T-\omega_0)^{\alpha}}{\Gamma_q(\alpha+1)} + \Phi_{\xi,\eta_1}\Theta_{T,\eta_2} +\Phi_{T,\eta_2}\Theta_{\xi,\eta_1} \right] + N_1\Theta_{T,\eta_2} +N_2\Theta_{\xi,\eta_1} \end{align} | (4.4) |
and
\begin{align} \big|\left( D^\gamma_{m,\chi}{\mathcal{A}}u\right) (t)\big| \leq\; &\big(\mathcal{L} \|u\|_{\mathcal{C}}+M\big)\left[ \frac{(T-\omega_0)^{\alpha-\nu}}{\Gamma_m(\alpha-\nu+1)} + \Phi_{\xi,\eta_1}\overline{\Theta}_{T,\eta_2} +\Phi_{T,\eta_2}\overline{\Theta}_{\xi,\eta_1}\right] \\ &+ N_1\overline{\Theta}_{T,\eta_2} +N_2\overline{\Theta}_{\xi,\eta_1}. \end{align} | (4.5) |
From (4.4) and (4.5), we obtain \|{\mathcal{A}}u\|_{\mathcal{C}}\leq R . Hence {\mathcal{A}} is uniformly bounded.
Step II. By the continuity of F , the operator {\mathcal{A}} is continuous on B_R .
Step III. Next, we show that {\mathcal{A}} is equicontinuous on B_R . For any t_1, t_2\in I^T_{q, \omega} with t_1 < t_2 , we have
\begin{align} \big| ({\mathcal{A}}u)&(t_2)- ({\mathcal{A}}u)(t_1) \big|\,\\ \leq\; &\frac{\|F\|}{\Gamma_q(\alpha+1)} \Big| (t_2-\omega_0)^\alpha -(t_1-\omega_0)^\alpha \Big|\\ +&\frac{ \Big| (t_2-\omega_0)^{\alpha-1} -(t_1-\omega_0)^{\alpha-1} \Big|}{|\Omega|} \Big\{ |\textbf{B}_{T,\eta_2}| \big|{\mathcal{O}_{\xi,\eta_1}^*[\phi_1,F_u]}\big| +|{\textbf{B}}_{\xi,\eta_1}|\big|{\mathcal{O}_{T,\eta_2}^*[\phi_2,F]}\big| \Big\}\\ +&\frac{\Big| (t_2-\omega_0)^{\alpha-2} -(t_1-\omega_0)^{\alpha-2} \Big|}{|\Omega|} \Big\{ |\textbf{A}_{T,\eta_2}|\big|{\mathcal{O}_{\xi,\eta_1}^*[\phi_1,F_u]}\big| +|{\textbf{A}}_{\xi,\eta_1}|\big|{\mathcal{O}_{T,\eta_2}^*[\phi_2,F]}\big| \Big\} \end{align} | (4.6) |
and
\begin{align} \big|(D_{m,\chi}&^\nu{\mathcal{F}}u)(t_1) -(D_{m,\chi}^\nu{\mathcal{F}}u)(t_2) \big|\\ \leq\,&\frac{\|F\|\Gamma_q(-\nu)}{\Gamma_m(-\nu)\Gamma_q(\alpha-\nu+1)}\Big|(t_2-\omega_0)^{\alpha-\nu} -(t_1-\omega_0)^{\alpha-\nu} \Big| \\ &+\frac{\Gamma_q(\alpha)\Gamma_q(-\nu)}{|\Omega|\Gamma_m(-\nu)\Gamma_q(\alpha-\nu)} \Big\{ |\textbf{B}_{T,\eta_2}| \big|{\mathcal{O}_{\xi,\eta_1}^*[\phi_1,F_u]}\big| +|{\textbf{B}}_{\xi,\eta_1}|\big|{\mathcal{O}_{T,\eta_2}^*[\phi_2,F]}\big| \Big\}\times\\ &\; \; \; \; \Big| (t_2-\omega_0)^{\alpha-\nu-1}-(t_1-\omega_0)^{\alpha-\nu-1} \Big| \\ &+\frac{\Gamma_q(\alpha-1)\Gamma_q(-\nu)}{|\Omega|\Gamma_m(-\nu)\Gamma_q(\alpha-\nu-1)} \Big\{ |\textbf{A}_{T,\eta_2}|\big|{\mathcal{O}_{\xi,\eta_1}^*[\phi_1,F_u]}\big| +|{\textbf{A}}_{\xi,\eta_1}|\big|{\mathcal{O}_{T,\eta_2}^*[\phi_2,F]}\big| \Big\} \times\\ & \; \; \; \; \Big| (t_2-\omega_0)^{\alpha-\nu-2}-(t_1-\omega_0)^{\alpha-\nu-2} \Big|. \end{align} | (4.7) |
Clearly the right-hand side of (4.6) and (4.7) tend to be zero when |t_2-t_1|\rightarrow 0 . So {\mathcal{A}} is relatively compact on B_R .
Hence the set {\mathcal{F}}(B_R) is an equicontinuous set. As a result of Steps I to III and the Arzelá-Ascoli theorem, we can conclude that \mathcal{A}:{\mathcal{C}}\rightarrow {\mathcal{C}} is completely continuous. By Schauder's fixed point theorem, we obtain that problem (1.1) has at least one solution.
Consider the following fractional Hahn integro-difference equation
\begin{eqnarray} D^{\frac{4}{3}}_{\frac{1}{2},\frac{2}{3}}u(t)& = &\frac{1}{\left( 100\pi^2+t^3\right)(1+|u(t)|)} \Bigg[ e^{-3t+1}\left( u^2+2|u|\right) + e^{-(\pi+\sin^2\pi t)}\left|\Psi_{\frac{1}{8},\frac{7}{6}}^{\frac{1}{2}}u(t) \right| \\ &&+ e^{-(2\pi+\cos^2\pi t)}\left|\Upsilon^{\frac{1}{4}}_{\frac{1}{4},1}u(t) \right| \Bigg],\; \; \; \; t\in I^{10}_{\frac{1}{2},\frac{2}{3}} \end{eqnarray} | (5.1) |
with four-point fractional Hahn integral boundary condition
\begin{eqnarray*} u\left(\frac{15}{8}\right) = 10e\, \mathcal{I}_{\frac{1}{16},\frac{5}{4}}^{\frac{1}{3}}u\left(2e+\sin \frac{699055}{524288}\right)^2 u\left( \frac{699055}{524288}\right) + \sum\limits_{i = 0}^{\infty}\frac{C_i|u(t_i)|}{1+|u(t_i)|},\; \; t_i \in \sigma_{\frac{1}{2}, \frac{2}{3}}^i(10),\nonumber\\ u\left(10\right) = \frac{1}{10\pi} \mathcal{I}_{\frac{1}{32},\frac{31}{24}}^{\frac{2}{3}}u\left(\pi+\cos \frac{65549}{49125}\right)^2 u\left( \frac{65549}{49125}\right) + \sum\limits_{i = 0}^{\infty}\frac{D_i|u(t_i)|}{1+|u(t_i)|},\; \; t_i \in \sigma_{\frac{1}{2}, \frac{2}{3}}^i(10),\nonumber \end{eqnarray*} |
where \; \varphi(t, s) = \frac{e^{-|t-s|}}{(t+20)^3}, \; \psi(t, s) = \frac{e^{-|t-s|}}{(t+30)^2} and \; C_i, D_i are given constants with \frac{1}{100t^3}\leq\sum_{i = 0}^{\infty}C_i\leq\frac{e}{100t^3} and \frac{1}{200t^2}\leq\sum_{i = 0}^{\infty}D_i\leq\frac{\pi}{200t^2} .
Here \; \alpha = \frac{4}{3}, \; \beta_1 = \frac{1}{3}, \; \beta_2 = \frac{2}{3}, \; \gamma = \frac{1}{2}, \; \nu = \frac{1}{4}, \; q = \frac{1}{2}, \; p_1 = \frac{1}{16}, \; p_2 = \frac{1}{32}, \; r = \frac{1}{8}, \; m = \frac{1}{4}, \; \; \omega = \frac{2}{3}, \\ \theta_1 = \frac{5}{4}, \; \theta_1 = \frac{31}{24}, \; \rho = \frac{7}{6}, \; \chi = 1, \; \omega_0 = \frac{\omega}{1-q} = \frac{4}{3}, \; T = 10, \; \xi = \sigma_{\frac{1}{2}, \frac{2}{3}}^4(10) = \frac{15}{8}, \; \eta_1 = \sigma_{\frac{1}{16}, \frac{5}{4}}^5(10) = \frac{699055}{524288}, \\ \eta_2 = \sigma_{\frac{1}{32}, \frac{31}{24}}^3(10) = \frac{65549}{49125} , \; \lambda_1 = 10e, \; \lambda_2 = \frac{1}{10\pi}, \; \; \phi_1(u) = \sum_{i = 0}^{\infty}\frac{C_i|u(t_i)|}{1+|u(t_i)|}, \\ \phi_2 = \sum_{i = 0}^{\infty}\frac{D_i|u(t_i)|}{1+|u(t_i)|}, \; g_1(t) = \left(2e+\sin t\right)^2, \; g_2(t) = \left(\pi+\cos t\right)^2, \text{and} \\ F\left(t, u(t), \Psi^\gamma_{r, \rho}u(t), \Upsilon^\nu_{m, \chi}u(t)\right)\\ = \, \frac{1}{\left(100\pi^2+t^3\right)(1+|u(t)|)} \Big[ e^{-3t+1}\left(u^2+2|u|\right) + e^{-(\pi+\sin^2\pi t)} \left|\Psi_{\frac{1}{8}, \frac{7}{6}}^{\frac{1}{2}}u(t) \right| + e^{-(2\pi+\cos^2\pi t)}\left|\Upsilon^{\frac{1}{4}}_{\frac{1}{4}, 1}u(t) \right| \Big].
For all \; t\in I^{10}_{\frac{1}{2}, \frac{2}{3}}\; and \; u, v\in {\mathbb{R}} , we have
\begin{align*} &\left| F\left( t,u,\Psi^\gamma_{r,\rho}u,\Upsilon^\nu_{m,\chi}u\right)- F\left( t,v,\Psi^\gamma_{r,\rho}v,\Upsilon^\nu_{m,\chi}v\right)\right| \\ \leq\; & \frac{1}{e^3\left( \left( \frac{4}{3}\right)^{3} +100\pi^2\right) }|u-v| +\frac{1}{e^\pi\left( \left( \frac{4}{3}\right)^{3} +100\pi^2\right) }\left| \Psi^\gamma_{r,\rho}u-\Psi^\gamma_{r,\rho}v\right|\\ +&\frac{1}{e^{2\pi}\left( \left( \frac{4}{3}\right)^{3} +100\pi^2\right) } \left|D^\nu_{m,\chi}u-D^\nu_{m,\chi}v \right|. \end{align*} |
Thus, (H_1) holds with \; \ell_1 = 0.0000503, \; \ell_2 = 0.00004367\; and \; \ell_3 = 1.8876\times10^{-6} .
For all \; u, v\in {\mathcal{C}} ,
\begin{align*} |\phi_1(u)-\phi_1(v)|\, = \,&\frac{e}{100\left( \frac{4}{3}\right) ^3}\|u-v\|_{\mathcal{C}},\\ |\phi_2(u)-\phi_2(v)|\, = \,&\frac{\pi}{200\left( \frac{4}{3}\right) ^2}\|u-v\|_{\mathcal{C}}. \end{align*} |
So, (H_2) holds with \; \tau_1 = 0.011468\; and \; \tau_2 = 0.0066268.
Moreover, (H_3) holds with g_1 = 19.6831, G_1 = 41.4294, g_2 = 4.5864 and G_2 = 17.1528 .
We can find that
|{\textbf{A}}_{\xi,\eta_1}|\leq1.27503,\; \; \; |{\textbf{A}}_{T,\eta_2}|\leq2.05422,\; \; \; |{\textbf{B}}_{\xi,\eta_1}|\leq61548.5314,\; \; \; |{\textbf{B}}_{T,\eta_2}|\leq0.08082 and \; \; |\Omega|\geq 60067.4763. |
Also, we can show that
{\mathcal{L}}\, = \,0.0000503,\; \; \Phi_{\xi,\eta_1}\, = \,0.39607,\; \; \Phi_{T,\eta_2}\, = \,15.96844,\\ \Theta_{\xi,\eta_1}\, = \,2.10473,\; \; \overline{\Theta}_{\xi,\eta_1}\, = \,1.25309,\; \; \Theta_{T,\eta_2}\, = \,0.0000357,\; \; \overline{\Theta}_{T,\eta_2}\, = \,0.00001716,\\ \Theta^*_{\xi,\eta_1}\, = \,3.35782,\; \; \Theta^*_{T,\eta_2}\, = \,0.00005286,\; \; \text{and}\; \; \mathcal{X} = 79.7178. |
Hence, (H_4) holds with
\Xi \approx 0.02626 < 1. |
Therefore, by Theorem 3.1 , problem (5.1) has a unique solution. Moreover, by Theorem 4.1 , this problem has at least one solution.
In the present research we considered a boundary value problem for Hahn integro-difference equation subject to four-point fractional Hahn integral boundary conditions. Notice that the problem at hand contains two fractional Hahn difference operators and three fractional Hahn integrals with different quantum numbers and orders. We note that if we let q = r = m = p_1 = p_2 and \omega = \rho = \theta_1 = \theta_2 , our results reduce to the results obtained in [46]–[48]. After proving an auxiliary result concerning a linear variant of the considered problem, the problem at hand is transformed into a fixed point problem. Existence and uniqueness results are established via Banach's and Schauder's fixed point theorems. The main results are illustrated by a numerical example. Some properties of fractional Hahn integral needed in our study are also discussed. The results of the paper are new and enrich the subject of boundary value problems for Hahn integro-difference equations. In the future work, we may extend this work by considering new boundary value problems.
This research was funded by the Science, Research and Innovation Promotion Fund under Basic Research Plan-Saun Dusit University.
The authors declare no conflict of interest.
[1] | I. Podlubny, Fractional differential equations, SanDiego: Academic Press, 1999. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | J. Sabatier, O. P. Agrawal, J. A. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. |
[4] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Singapore: World Scientific, 2012. |
[5] |
S. Rezapour, S. K. Ntouyas, M. Q. Iqbal, A. Hussain, S. Etemad, J. Tariboon, An analytical survey on the solutions of the generalized double-order \varphi-integrodifferential equation, J. Funct. Space., 2021 (2021). doi: 10.1155/2021/6667757. doi: 10.1155/2021/6667757
![]() |
[6] |
S. Sitho, S. Etemad, B. Tellab, S. Rezapour, S. K. Ntouyas, J. Tariboon, Approximate solutions of an extended multi-order boundary value problem by implementing two numerical algorithms, Symmetry, 13 (2021), 1–26. doi: 10.3390/sym13081341. doi: 10.3390/sym13081341
![]() |
[7] |
S. Heidarkhani, G. Caristi, A. Salari, Nontrivial solutions for impulsive elastic beam equations of Kirchhoff-type, J. Nonlinear Funct. Anal., 2020 (2020), 1–16. doi: 10.23952/jnfa.2020.4. doi: 10.23952/jnfa.2020.4
![]() |
[8] |
M. Kamenski, G. Petrosyan, C. F. Wen, An existence result for a periodic boundary value problem of fractional semilinear differential equations in Banach spaces, J. Nonlinear Var. Anal., 5 (2021), 155–177. doi: 10.23952/jnva.5.2021.1.10. doi: 10.23952/jnva.5.2021.1.10
![]() |
[9] |
W. Yukunthorn, B. Ahmad, S. K. Ntouyas, J. Tariboon, On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal.-Hybri., 19 (2016), 77–92. doi: 10.1016/j.nahs.2015.08.001. doi: 10.1016/j.nahs.2015.08.001
![]() |
[10] | R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals, New York: McGraw-Hill, 1965. |
[11] | B. Ahmad, S. Ntouyas, J. Tariboon, Quantum calculus: New concepts, impulsive IVPs and BVPs, inequalities, Singapore: World Scientific, 2016. |
[12] | M. H. Annaby, Z. S. Mansour, q-fractional calculus and equations, Berlin: Springer, 2012. doi: 10.1007/978-3-642-30898-7. |
[13] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. doi: 10.1007/978-1-4613-0071-7. |
[14] | D. L. Jagerman, Difference equations with applications to queues, New York: CRC Press, 2000. doi: 10.1201/9780203909737. |
[15] |
T. Sitthiwirattham, A. Zeb, S. Chasreechai, Z. Eskandari, M. Tilioua, S. Djilali, Analysis of a discrete mathematical COVID-19 model, Results Phys., 28 (2021), 104668. doi: 10.1016/j.rinp.2021.104668. doi: 10.1016/j.rinp.2021.104668
![]() |
[16] | K. A. Aldowah, A. B. Malinowska, D. F. M. Torres, The power quantum calculus and variational problems, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19 (2012), 93–116. |
[17] |
A. M. C. Birto da Cruz, N. Martins, D. F. M. Torres, Symmetric differentiation on time scales, Appl. Math. Lett., 26 (2013), 264–269. doi: 10.1016/j.aml.2012.09.005. doi: 10.1016/j.aml.2012.09.005
![]() |
[18] | A. M. C. Birto da Cruz, Symmetric quantum calculus, Ph. D. thesis, Universidade de Aveiro, 2012. |
[19] |
G. C. Wu, D. Baleanu, New applications of the variational iteration method-from differential equations to q-fractional difference equations, Adv. Differ. Equ., 2013 (2013), 1–16. doi: 10.1186/1687-1847-2013-21. doi: 10.1186/1687-1847-2013-21
![]() |
[20] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1–19. doi: 10.1186/1687-1847-2013-282. doi: 10.1186/1687-1847-2013-282
![]() |
[21] |
R. Álvarez-Nodarse, On characterization of classical polynomials, J. Comput. Appl. Math., 196 (2006), 320–337. doi: 10.1016/j.cam.2005.06.046. doi: 10.1016/j.cam.2005.06.046
![]() |
[22] |
R. P. Agarwal, D. Baleanu, V. Hedayati, S. Rezapour, Two fractional derivative inclusion problems via integral boundary condition, Appl. Math. Comput., 257 (2015), 205–212. doi: 10.1016/j.amc.2014.10.082. doi: 10.1016/j.amc.2014.10.082
![]() |
[23] |
R. P. Agarwal, D. Baleanu, S. Rezapour, S. Salehi, The existence of solution for some fractional finite difference equations via sum boundary conditions, Adv. Differ. Equ., 2014 (2014), 1–16. doi: 10.1186/1687-1847-2014-282. doi: 10.1186/1687-1847-2014-282
![]() |
[24] |
N. Nyamoradi, D. Baleanu, R. P. Agarwal, Existence and uniqueness of positivesolutions to fractional boundary valueproblems with nonlinear boundaryconditions, Adv. Differ. Equ., 2013 (2013), 1–11. doi: 10.1186/1687-1847-2013-266. doi: 10.1186/1687-1847-2013-266
![]() |
[25] |
W. Hahn, Über orthogonalpolynome, die q-differenzenlgleichungen genügen, Math. Nachr., 2 (1949), 4–34. doi: 10.1002/mana.19490020103. doi: 10.1002/mana.19490020103
![]() |
[26] |
R. S. Costas-Santos, F. Marcellán, Second structure relation for q-semiclassical polynomials of the Hahn Tableau, J. Math. Anal. Appl., 329 (2007), 206–228. doi: 10.1016/j.jmaa.2006.06.036. doi: 10.1016/j.jmaa.2006.06.036
![]() |
[27] | K. H. Kwon, D. W. Lee, S. B. Park, B. H. Yoo, Hahn class orthogonal polynomials, Kyungpook Math. J., 38 (1998), 259–281. |
[28] | M. Foupouagnigni, Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: Fourth-order difference equation for the rth associated and the Laguerre-Freud equations recurrence coefficients, Ph. D. thesis, Université Nationale du Bénin, 1998. |
[29] | K. A. Aldwoah, Generalized time scales and associated difference equations, Ph. D. thesis, Cairo University, 2009. |
[30] |
M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory App., 154 (2012), 133–153. doi: 10.1007/s10957-012-9987-7. doi: 10.1007/s10957-012-9987-7
![]() |
[31] |
F. H. Jackson, Basic integration, Q. J. Math., 2 (1951), 1–16. doi: 10.1093/qmath/2.1.1. doi: 10.1093/qmath/2.1.1
![]() |
[32] |
A. B. Malinowska, D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory App., 147 (2010), 419–442. doi: 10.1007/s10957-010-9730-1, doi: 10.1007/s10957-010-9730-1,
![]() |
[33] | A. B. Malinowska, D. F. M. Torres, Quantum variational calculus, Cham: Springer, 2014. doi: 10.1007/978-3-319-02747-0. |
[34] |
A. B. Malinowska, N. Martins, Generalized transversality conditions for the Hahn quantum variational calculus, Optimization, 62 (2013), 323–344. doi: 10.1080/02331934.2011.579967. doi: 10.1080/02331934.2011.579967
![]() |
[35] | A. E. Hamza, S. M. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 4 (2013), 441–461. |
[36] |
A. E. Hamza, S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 2013 (2013), 1–15. doi: 10.1186/1687-1847-2013-316. doi: 10.1186/1687-1847-2013-316
![]() |
[37] |
A. E. Hamza, S. D. Makharesh, Leibniz' rule and Fubinis theorem associated with Hahn difference operator, J. Adv. Math., 12 (2016), 6335–6345. doi: 10.24297/jam.v12i6.3836
![]() |
[38] |
T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, \omega-derivatives, Adv. Differ. Equ., 2016 (2016), 1–25. doi: 10.1186/s13662-016-0842-2. doi: 10.1186/s13662-016-0842-2
![]() |
[39] |
U. Sriphanomwan, J. Tariboon, N. Patanarapeelert, S. K. Ntouyas, T. Sitthiwirattham, Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions, Adv. Differ. Equ., 2017 (2017), 1–18. doi: 10.1186/s13662-017-1228-9. doi: 10.1186/s13662-017-1228-9
![]() |
[40] |
J. \check{C}erm\acute{a}k, L. Nechv\acute{a}tal, On (q, h)-analogue of fractional calculus, J. Nonlinear Math. Phy., 17 (2010), 51–68. doi: 10.1142/S1402925110000593. doi: 10.1142/S1402925110000593
![]() |
[41] |
J. \check{C}erm\acute{a}k, T. Kisela, L. Nechv\acute{a}tal, Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., 2011 (2011), 1–21. doi: 10.1155/2011/565067. doi: 10.1155/2011/565067
![]() |
[42] |
M. R. S. Rahmat, The (q, h)-Laplace transform on discrete time scales, Comput. Math. Appl., 62 (2011), 272–281. doi: 10.1016/j.camwa.2011.05.008. doi: 10.1016/j.camwa.2011.05.008
![]() |
[43] |
M. R. S. Rahmat, On some (q, h)-analogues of integral inequalities on discrete time scales, Comput. Math. Appl., 62 (2011), 1790–1797. doi: 10.1016/j.camwa.2011.06.022. doi: 10.1016/j.camwa.2011.06.022
![]() |
[44] |
F. F. Du, B. G. Jai, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional (q, h)-difference, J. Differ. Equ. Appl., 22 (2016), 1224–1243. doi: 10.1080/10236198.2016.1188089. doi: 10.1080/10236198.2016.1188089
![]() |
[45] |
T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ., 2017 (2017), 1–15. doi: 10.1186/s13662-017-1412-y. doi: 10.1186/s13662-017-1412-y
![]() |
[46] |
N. Patanarapeelert, T. Sitthiwirattham, Existence results for fractional Hahn difference and fractional Hahn integral boundary value problems, Discrete Dyn. Nat. Soc., 2017 (2017), 1–13. doi: 10.1155/2017/7895186. doi: 10.1155/2017/7895186
![]() |
[47] |
N. Patanarapeelert, T. Brikshavana, T. Sitthiwirattham, On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations, Bound. Value Probl., 2018 (2018), 1–17. doi: 10.1186/s13661-017-0923-5. doi: 10.1186/s13661-017-0923-5
![]() |
[48] |
N. Patanarapeelert, T. Sitthiwirattham, On nonlocal Robin boundary value problems for Riemann-Liouville fractional Hahn integrodifference equation, Bound. Value Probl., 2018 (2018), 1–16. doi: 10.1186/s13661-018-0969-z. doi: 10.1186/s13661-018-0969-z
![]() |
[49] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. |
1. | Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour, A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p -Laplacian operator, 2022, 7, 2473-6988, 14187, 10.3934/math.2022782 | |
2. | Shahram Rezapour, Bashir Ahmad, Abdellatif Boutiara, Kamsing Nonlaopon, Sina Etemad, Existence and stability results for non-hybrid single-valued and fully hybrid multi-valued problems with multipoint-multistrip conditions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02815-y | |
3. | Wuyang Wang, Jun Ye, Jiafa Xu, Donal O’Regan, Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives, 2022, 14, 2073-8994, 2320, 10.3390/sym14112320 | |
4. | Gunaseelan Mani, Balaji Ramalingam, Sina Etemad, İbrahim Avcı, Shahram Rezapour, On the Menger Probabilistic Bipolar Metric Spaces: Fixed Point Theorems and Applications, 2024, 23, 1575-5460, 10.1007/s12346-024-00958-5 | |
5. | Elsaddam A. Baheeg, Karima M. Oraby, Mohamed S. Akel, Some results on fractional Hahn difference boundary value problems, 2023, 56, 2391-4661, 10.1515/dema-2022-0247 | |
6. | Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham, On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions, 2024, 9, 2473-6988, 35016, 10.3934/math.20241667 |