Research article

A new fixed point approach for solutions of a $ p $-Laplacian fractional $ q $-difference boundary value problem with an integral boundary condition

  • Received: 27 April 2024 Revised: 29 June 2024 Accepted: 01 July 2024 Published: 08 August 2024
  • MSC : 34A08, 34Bxx, 34B18

  • We explored a class of quantum calculus boundary value problems that include fractional $ q $-difference integrals. Sufficient and necessary conditions for demonstrating the existence and uniqueness of positive solutions were stated using fixed point theorems in partially ordered spaces. Moreover, the existence of a positive solution for a boundary value problem with a Riemann-Liouville fractional derivative and an integral boundary condition was examined by utilizing a novel fixed point theorem that included a $ \mathfrak{a} $-$ \eta $-Geraghty contraction. Several examples were provided to demonstrate the efficacy of the outcomes.

    Citation: Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut. A new fixed point approach for solutions of a $ p $-Laplacian fractional $ q $-difference boundary value problem with an integral boundary condition[J]. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155

    Related Papers:

  • We explored a class of quantum calculus boundary value problems that include fractional $ q $-difference integrals. Sufficient and necessary conditions for demonstrating the existence and uniqueness of positive solutions were stated using fixed point theorems in partially ordered spaces. Moreover, the existence of a positive solution for a boundary value problem with a Riemann-Liouville fractional derivative and an integral boundary condition was examined by utilizing a novel fixed point theorem that included a $ \mathfrak{a} $-$ \eta $-Geraghty contraction. Several examples were provided to demonstrate the efficacy of the outcomes.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000. https://doi.org/10.1142/3779
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [3] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [4] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1999.
    [5] S. Gul, R. A. Khan, K. Shah, T. Abdeljawad, On a general class of $n$th order sequential hybrid fractional differential equations with boundary conditions, AIMS Mathematics, 8 (2023), 9740–9760. https://doi.org/10.3934/math.2023491 doi: 10.3934/math.2023491
    [6] S. W. Ahmad, M. Sarwar, K. Shah, Eiman, T. Abdeljawad, Study of a coupled system with sub-Strip and multi-valued boundary conditions via topological degree theory on an infinite domain, Symmetry, 14 (2022), 841. https://doi.org/10.3390/sym14050841 doi: 10.3390/sym14050841
    [7] M. H. Annaby, Z. S. Mansour, q-Fractional calculus and equations, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-30898-7
    [8] K. Ma, X. Li, S. Sun, Boundary value problems of fractional $q$-difference equations on the half-line, Bound. Value Probl., 2019 (2019), 46. https://doi.org/10.1186/s13661-019-1159-3 doi: 10.1186/s13661-019-1159-3
    [9] N. Nyamoradi, S. K. Ntouyas, J. Tariboon, Existence of positive solutions to boundary value problems with mixed riemann-liouville and quantum fractional derivatives, Fractal Fract., 7 (2023), 685. https://doi.org/10.3390/fractalfract7090685 doi: 10.3390/fractalfract7090685
    [10] T. Abdeljawad, M. E. Samei, Applying quantum calculus for the existence of solution of q-integro-differential equations with three criteria, Discrete Contin. Dyn. Syst. S, 14 (2021), 3351–3386. https://doi.org/10.3934/dcdss.2020440 doi: 10.3934/dcdss.2020440
    [11] Q. Ge, C. Hou, Positive solution for a class of $p$-Laplacian fractional $q$-difference equations involving the integral boundary condition, Math. Aeterna, 5 (2015), 927–944.
    [12] Y. Li, G. Li, Positive solutions of $p$-Laplacian fractional differential equations with integral boundary value conditions, J. Nonlinear Sci. Appl., 9 (2016), 717–726.
    [13] L. Zhang, W. Zhang, X. Liu, M. Jia, Positive solutions of fractional $p$-laplacian equations with integral boundary value and two parameters, J. Inequal. Appl., 2020 (2020), 2. https://doi.org/10.1186/s13660-019-2273-6 doi: 10.1186/s13660-019-2273-6
    [14] F. Miao, S. Liang, Uniqueness of positive solutions for fractional $q$-difference boundary-value problems with $p$-laplacian operator, Electron. J. Differ. Equ., 2013 (2013), 174.
    [15] M. Mardanov, N. Mahmudov, Y. Sharifov, Existence and uniqueness results for $q$-fractional difference equations with $p$-Laplacian operators, Adv. Differ. Equ., 2015 (2015), 185. https://doi.org/10.1186/s13662-015-0532-5 doi: 10.1186/s13662-015-0532-5
    [16] H. Aktuğlu, M. Ali Özarslan, On the solvability of caputo $q$-fractional boundary value problem involving $p$-laplacian operator, Abstr. Appl. Anal., 2013 (2013), 658617. https://doi.org/10.1155/2013/658617 doi: 10.1155/2013/658617
    [17] Y. Yan, C. Hou, Existence of multiple positive solutions for $p$-laplacian fractional $q$-difference equations with integral boundary conditions, J. Phys. Conf. Ser., 1324 (2019), 012004. https://doi.org/10.1088/1742-6596/1324/1/012004 doi: 10.1088/1742-6596/1324/1/012004
    [18] L. Ragoub, F. Tchier, F. Tawfiq, Criteria of existence for a $q$ fractional $p$-laplacian boundary value problem, Front. Appl. Math. Stat., 6 (2020), 1–11. https://doi.org/10.3389/fams.2020.00007 doi: 10.3389/fams.2020.00007
    [19] V. G. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [20] P. M. Rajkovic, S. D. Marinkovic, M. S. Stankovic, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311–323. https://doi.org/10.2298/AADM0701311R doi: 10.2298/AADM0701311R
    [21] J. Harjani, K. Sadarngani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theor., 71 (2009), 3403–3410. https://doi.org/10.1016/j.na.2009.01.240 doi: 10.1016/j.na.2009.01.240
    [22] J. J. Nieto, R. Rodríguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5
    [23] R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012
    [24] K. A. Singh, Some remarks on the paper "Fixed point of $\alpha$-geraghty contraction with applications", Electron. J. Math. Anal. Appl., 9 (2021), 174–178. https://doi.org/10.21608/ejmaa.2021.313067 doi: 10.21608/ejmaa.2021.313067
    [25] M. Asadi, E. Karapınar, A. Kumar, $\alpha$-$\psi$-Geraghty contractions on generalized metric spaces, J. Inequal. Appl., 2014 (2014), 423. https://doi.org/10.1186/1029-242X-2014-423 doi: 10.1186/1029-242X-2014-423
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(457) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog