Research article

Outer space branching search method for solving generalized affine fractional optimization problem

  • Received: 18 July 2022 Revised: 23 September 2022 Accepted: 10 October 2022 Published: 26 October 2022
  • MSC : 90C26, 90C32, 65K05

  • This paper proposes an outer space branching search method, which is used to globally solve the generalized affine fractional optimization problem (GAFOP). First, we will convert the GAFOP into an equivalent problem (EP). Next, we structure the linear relaxation problem (LRP) of the EP by using the linearization technique. By subsequently partitioning the initial outer space rectangle and successively solving a series of LRPs, the proposed algorithm globally converges to the optimum solution of the GAFOP. Finally, comparisons of numerical results are reported to show the superiority and the effectiveness of the presented algorithm.

    Citation: Junqiao Ma, Hongwei Jiao, Jingben Yin, Youlin Shang. Outer space branching search method for solving generalized affine fractional optimization problem[J]. AIMS Mathematics, 2023, 8(1): 1959-1974. doi: 10.3934/math.2023101

    Related Papers:

  • This paper proposes an outer space branching search method, which is used to globally solve the generalized affine fractional optimization problem (GAFOP). First, we will convert the GAFOP into an equivalent problem (EP). Next, we structure the linear relaxation problem (LRP) of the EP by using the linearization technique. By subsequently partitioning the initial outer space rectangle and successively solving a series of LRPs, the proposed algorithm globally converges to the optimum solution of the GAFOP. Finally, comparisons of numerical results are reported to show the superiority and the effectiveness of the presented algorithm.



    加载中


    [1] C. D. Maranas, I. P. Androulakis, C. A. Floudas, A. J. Bergerb, J. M. Mulvey, Solving long-term financial planning problems via global optimization, J. Econ. Dyn. Contr., 21 (1997), 1405–1425. https://doi.org/10.1016/S0165-1889(97)00032-8 doi: 10.1016/S0165-1889(97)00032-8
    [2] H. W. Jiao, J. Q. Ma, P. P. Shen, Y. J. Qiu, Effective algorithm and computational complexity for solving sum of linear ratios problem, J. Ind. Manag. Optim., 2022. http://dx.doi.org/10.3934/jimo.2022135 doi: 10.3934/jimo.2022135
    [3] H. W. Jiao, S. Y. Liu, An efficient algorithm for quadratic Sum-of-Ratios fractional programs problem, Numer. Func. Anal. Opt., 38 (2017), 1426–1445. https://doi.org/10.1080/01630563.2017.1327869 doi: 10.1080/01630563.2017.1327869
    [4] J. E. Falk, S. W. Palocsay, Optimizing the sum of linear fractional functions, recent advances in global optimization, New Jersey: Princeton University Press, 1992.
    [5] H. W. Jiao, J. Q. Ma, An efficient algorithm and complexity result for solving the sum of general ratios problem, Chaos Soliton. Fract., 164 (2022), 112701. https://doi.org/10.1016/j.chaos.2022.112701 doi: 10.1016/j.chaos.2022.112701
    [6] C. Bajona-Xandri, J. E. Martinez-Legaz, Lower subdifferentiability in minimax fractional programming, Optimization, 45 (1999), 1–12. https://doi.org/10.1080/02331939908844423 doi: 10.1080/02331939908844423
    [7] F. Ding, Two-stage least squares based iterative estimation algorithm for CARARMA system modeling, Appl. Math.Model., 37 (2013), 4798–4808. https://doi.org/10.1016/j.apm.2012.10.014 doi: 10.1016/j.apm.2012.10.014
    [8] F. Ding, Decomposition based fast least squares algorithm for output error systems, Signal Process., 93 (2013), 1235–1242. https://doi.org/10.1016/j.sigpro.2012.12.013 doi: 10.1016/j.sigpro.2012.12.013
    [9] H. W. Jiao, S. Y. Liu, Range division and compression algorithm for quadratically constrained sum of quadratic ratios, Comp. Appl. Math., 36 (2017), 225–247. https://doi.org/10.1007/s40314-015-0224-5 doi: 10.1007/s40314-015-0224-5
    [10] H. W. Jiao, S. Y. Liu, W. J. Wang, Solving generalized polynomial problem by using new affine relaxed technique, Int. J. Comput. Math., 99 (2022), 309–331. https://doi.org/10.1080/00207160.2021.1909727 doi: 10.1080/00207160.2021.1909727
    [11] H. W. Jiao, W. J. Wang, R. J. Chen, Y. L. Shang, J. B. Yin, An efficient outer space algorithm for generalized linear multiplicative programming problem, IEEE Access, 8 (2020), 80629–80637. https://doi.org/10.1109/ACCESS.2020.2990677 doi: 10.1109/ACCESS.2020.2990677
    [12] H. W. Jiao, Y. L. Shang, R. J. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions, Optimization, 2022. https://doi.org/10.1080/02331934.2022.2032051 doi: 10.1080/02331934.2022.2032051
    [13] Y. Y. Ding, Y. H. Xiao, J. W. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66 (2017), 2309–2328. https://doi.org/10.1080/02331934.2017.1372438 doi: 10.1080/02331934.2017.1372438
    [14] Y. H. Xiao, L. Chen, D. H. Li, A generalized alternating direction method of multipliers with semi-proximal terms for convex composite conic programming, Math. Program. Comput., 10 (2018), 533–555. https://doi.org/10.1007/s12532-018-0134-9 doi: 10.1007/s12532-018-0134-9
    [15] H. W. Jiao, W. J. Wang, J. B. Yin, Y. L. Shang, Image space branch-reduction-bound algorithm for globally minimizing a class of multiplicative problems, Rairo-Oper. Res., 56 (2022), 1533–1552. https://doi.org/10.1051/ro/2022061 doi: 10.1051/ro/2022061
    [16] H. W. Jiao, Y. L. Shang, Two-level linear relaxation method for generalized linear fractional programming, J. Oper. Res. Soc., 2022. https://doi.org/10.1007/s40305-021-00375-4 doi: 10.1007/s40305-021-00375-4
    [17] H. W. Jiao, W. J. Wang, Y. L. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem, J. Comput. Appl. Math., 419 (2023), 114784. https://doi.org/10.1016/j.cam.2022.114784 doi: 10.1016/j.cam.2022.114784
    [18] A. I. Barros, J. B. G. Frenk, Generalized fractional programming and cutting plane algorithms, J. Optim. Theory Appl., 87 (1995), 103–120. https://doi.org/10.1007/BF02192043 doi: 10.1007/BF02192043
    [19] Q. G. Feng, H. P. Mao, H. W. Jiao, A feasible method for a class of mathematical problems in manufacturing system, Key Eng. Mater., 460 (2011), 806–809. https://doi.org/10.4028/www.scientific.net/KEM.460-461.806 doi: 10.4028/www.scientific.net/KEM.460-461.806
    [20] Q. G. Feng, H. W. Jiao, H. P. Mao, Y. Q. Chen, A deterministic algorithm for min-max and max-min linear fractional programming problems, Int. J. Comput. Int. Sys., 4 (2011), 134–141. http://dx.doi.org/10.1080/18756891.2011.9727770 doi: 10.1080/18756891.2011.9727770
    [21] R.W. Freund, F. Jarre, An interior-point method for fractional programs with convex constraints, Math. Program., 67 (1994), 407–440. https://doi.org/10.1007/BF01582229 doi: 10.1007/BF01582229
    [22] Y. Benadada, J. A. Fedand, Partial linearization for generalized fractional programming, Zeitschrift Für Oper. Res., 32 (1988), 101–106. https://doi.org/10.1007/BF01919185 doi: 10.1007/BF01919185
    [23] N. T. H. Phuong, H. Tuy, A unified monotonic approach to generalized linear fractional programming, J. Global Optim., 26 (2003), 229–259. https://doi.org/10.1023/A:1023274721632 doi: 10.1023/A:1023274721632
    [24] A. Roubi, Method of centers for generalized fractional programming, J. Optim. Theory Appl., 107 (2000), 123–143. https://doi.org/10.1023/A:1004660917684 doi: 10.1023/A:1004660917684
    [25] M. Gugat, Prox-regularization methods for generalized fractional programming, J. Optim. Theory Appl., 99 (1998), 691–722. https://doi.org/10.1023/A:1021759318653 doi: 10.1023/A:1021759318653
    [26] A. Ghazi, A. Roubi, A DC approach for minimax fractional optimization programs with ratios of convex functions, Optim. Methods Softw., 2020. https://doi.org/10.1080/10556788.2020.1818234 doi: 10.1080/10556788.2020.1818234
    [27] H. Boualam, A. Roubi, Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs, J. Ind. Manag. Optim., 15 (2019), 1897–1920. https://doi.org/10.3934/jimo.2018128 doi: 10.3934/jimo.2018128
    [28] H. W. Jiao, J. Q. Ma, Y. Shang, Image space branch-and-bound algorithm for globally solving minimax linear fractional programming problem, Pac. J. Optim., 18 (2022), 195–212.
    [29] M. E. Haffari, A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, J. Ind. Manag. Optim., 13 (2017). https://doi.org/10.3934/jimo.2017028 doi: 10.3934/jimo.2017028
    [30] H. W. Jiao, B. B. Li, Solving min-max linear fractional programs based on image space branch-and-bound scheme, Chaos Soliton. Fract., 164 (2022), 112682. https://doi.org/10.1016/j.chaos.2022.112682 doi: 10.1016/j.chaos.2022.112682
    [31] I. Ahmad, Z. Husain, Duality in nondifferentiable minimax fractional programming with generalized convexity, Appl. Math. Comput., 176 (2006), 545–551. https://doi.org/10.1016/j.amc.2005.10.002 doi: 10.1016/j.amc.2005.10.002
    [32] W. E. Schmitendorf, Necessary conditions and sufficient conditions for static minimax problems, J. Math. Anal. Appl., 57 (1977), 683–693. https://doi.org/10.1016/0022-247X(77)90255-4 doi: 10.1016/0022-247X(77)90255-4
    [33] S. Tanimoto, Duality for a class of nondifferentiable mathematical programming problems, J. Math. Anal. Appl., 79 (1981), 286–294. https://doi.org/10.1016/0022-247X(81)90025-1 doi: 10.1016/0022-247X(81)90025-1
    [34] S. R. Yadav, R. N. Mukherjee, Duality for fractional minimax programming problems, ANZIAM J., 31 (1990), 484–492. https://doi.org/10.1017/S0334270000006809 doi: 10.1017/S0334270000006809
    [35] V. Jeyakumar, G. Y. Li, S. Srisatkunarajah, Strong duality for robust minimax fractional programming problems, Eur. J. Oper. Res., 228 (2013), 331–336. https://doi.org/10.1016/j.ejor.2013.02.015 doi: 10.1016/j.ejor.2013.02.015
    [36] H. C. Lai, J. C. Liu, K. Tanaka, Duality without a constraint qualification for minimax fractional programming, J. Math. Anal. Appl., 101 (1999), 109–125. https://doi.org/10.1023/A:1021771011210 doi: 10.1023/A:1021771011210
    [37] I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019) 2125–2169. https://doi.org/10.1080/02331934.2019.1632250 doi: 10.1080/02331934.2019.1632250
    [38] I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017) 439–470. https://doi.org/10.1080/02331934.2016.1276179 doi: 10.1080/02331934.2016.1276179
    [39] C. F. Wang, Y. Jiang, P. P. Shen, A new branch-and-bound algorithm for solving minimax linear fractional programming, J. Math., 38 (2018), 113–123.
    [40] H. W. Jiao, S. Y. Liu, A new linearization technique for minimax linear fractional programming, Int. J. Comput. Math., 91 (2014), 1730–1743. https://doi.org/10.1080/00207160.2013.860449 doi: 10.1080/00207160.2013.860449
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1275) PDF downloads(58) Cited by(4)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog