In this paper, some new versions of Bohr-type inequalities for bounded analytic functions of Schwarz functions are established. Most of these inequalities are sharp. Some previous inequalities are generalized.
Citation: Xiaojun Hu, Qihan Wang, Boyong Long. Bohr-type inequalities for bounded analytic functions of Schwarz functions[J]. AIMS Mathematics, 2021, 6(12): 13608-13621. doi: 10.3934/math.2021791
In this paper, some new versions of Bohr-type inequalities for bounded analytic functions of Schwarz functions are established. Most of these inequalities are sharp. Some previous inequalities are generalized.
[1] | Y. A. Muhanna, Bohr's phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ., 55 (2010), 1071–1078. doi: 10.1080/17476931003628190 |
[2] | Y. A. Muhanna, R. M. Ali, Bohr's phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl., 379 (2011), 512–517. doi: 10.1016/j.jmaa.2011.01.023 |
[3] | Y. A. Muhanna, R. M. Ali, Bohr's phenomenon for analytic functions and the hyperbolic metric, Math. Nachr., 286 (2013), 1059–1065. doi: 10.1002/mana.201200197 |
[4] | Y. Abu-Muhanna, R. M. Ali, Z. C. Ng, Bohr radius for the punctured disk, Math. Nachr., 290 (2017), 2434–2443. doi: 10.1002/mana.201600094 |
[5] | L. Aizenberg, Multidimensional analogues of Bohr's theorem on power series, Proc. Amer. Math. Soc., 128 (2000), 1147–1155. |
[6] | L. Aizenberg, Generalization of Carathéodory's inequality and the Bohr radius for multidimensional power series, In: Selected topics in complex analysis, Birkhäuser, Basel, 2005. |
[7] | Y. A. Muhanna, R. M. Ali, S. Ponnusamy, On the Bohr inequality, In: Progress in approximation theory and applicable complex analysis, Springer, Cham, 117 (2017), 269–300. |
[8] | R. M. Ali, R. W. Barnard, A. Y. Solynin, A note on the Bohr's phenomenon for power series, J. Math. Anal. Appl., 449 (2017), 154–167. doi: 10.1016/j.jmaa.2016.11.049 |
[9] | R. M. Ali, N. K. Jain, V. Ravichandran, Bohr radius for classes of analytic functions, Results Math., 74 (2019), 179. doi: 10.1007/s00025-019-1102-z |
[10] | S. A. Alkhaleefah, I. Kayumov, S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, P. Am. Math. Soc., 147 (2019), 5263–5274. doi: 10.1090/proc/14634 |
[11] | L. Bernal-González, H. J. Cabana, D. Garcia, M. Maestre, G. A. Muañoz-Fernández, J. B. Seoane-Sepúlveda, A new approach towards estimating the n-dimensional bohr radius, RACSAM, 115 (2021), 44. |
[12] | H. Boas, D. Khavinson, Bohr's power series theorem in several variables, P. Am. Math. Soc., 125 (1997), 2975–2979. doi: 10.1090/S0002-9939-97-04270-6 |
[13] | H. Bohr, A theorem concerning power series, Proc. London Math. Soc., 13 (1914), 1–5. |
[14] | I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, New York : Marcel Dekker Inc, 2003. |
[15] | I. R. Kayumov, S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory., 17 (2017), 679–688. doi: 10.1007/s40315-017-0206-2 |
[16] | I. Kayumov, S. Ponnusamy, Bohr-Rogosinski radius for analytic functions, 2017, arXiv: 1708.05585v1. |
[17] | I. R. Kayumov, S. Ponnusamy, N. Shakirov, Bohr radius for locally univalent harmonic mappings, Math. Nachr., 291 (2017), 1757–1768. |
[18] | E. Landau, D. Gaier, Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, 1986. |
[19] | G. Liu, Z. H. Liu, S. Ponnusamy, Refined Bohr inequality for bounded analytic function, 2020, arXiv: 2006.08930v1. |
[20] | Z. H. Liu, S. Ponnusamy, Bohr radius for subordination and K-quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc., 42 (2019), 2151–2168. doi: 10.1007/s40840-019-00795-9 |
[21] | M. S. Liu, Y. M. Shang, J. F. Xu, Bohr-type inequalities of analytic functions, J. Inequal. Appl., 2018 (2018), 345. doi: 10.1186/s13660-018-1937-y |
[22] | V. I. Paulsen. G. Popescu, D. Singh, On Bohr's inequality, P. Lond. Math. Soc., 85 (2002), 493–512. |
[23] | W. Rogosinski, Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z., 17 (1923), 260–276. doi: 10.1007/BF01504347 |
[24] | I. Schur, G. Szegö, Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe, Sitz. Ber. Preuss. Acad. Wiss. Berlin Phys. Math. Kl, 1925,545–560. |
[25] | S. Sidon, Über einen satz von herrn bohr, Math. Z., 26 (1927), 731–732. doi: 10.1007/BF01475487 |
[26] | M. Tomić, Sur un théorème de H. Bohr, Math. Scand., 11 (1962), 103–106. doi: 10.7146/math.scand.a-10653 |
[27] | V. Allu, H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl., 493 (2021), 124519. doi: 10.1016/j.jmaa.2020.124519 |