Research article

A general class of estimators on estimating population mean using the auxiliary proportions under simple and two phase sampling

  • Received: 27 May 2021 Accepted: 13 September 2021 Published: 24 September 2021
  • MSC : 62D99, 62F10

  • This article deals with estimation of finite population mean using the auxiliary proportion under simple and two phase sampling scheme utilizing two auxiliary variables. Mathematical expressions for the mean squared errors of the proposed estimators are derived under first order of approximation. We compare the proposed class of estimators "theoretically and numerically" with the usual mean estimator of Naik and Gupta [1]. The theoretical as well as numerical findings support the superiority of our proposed class of estimator as compared to estimators available in literature.

    Citation: Xuechen Liu, Muhammad Arslan. A general class of estimators on estimating population mean using the auxiliary proportions under simple and two phase sampling[J]. AIMS Mathematics, 2021, 6(12): 13592-13607. doi: 10.3934/math.2021790

    Related Papers:

  • This article deals with estimation of finite population mean using the auxiliary proportion under simple and two phase sampling scheme utilizing two auxiliary variables. Mathematical expressions for the mean squared errors of the proposed estimators are derived under first order of approximation. We compare the proposed class of estimators "theoretically and numerically" with the usual mean estimator of Naik and Gupta [1]. The theoretical as well as numerical findings support the superiority of our proposed class of estimator as compared to estimators available in literature.



    加载中


    [1] V. D. Naik, P. C. Gupta, A note on estimation of mean with known population proportion of an auxiliary character, J. Indain. Soc. Agric. Stat., 48 (1996), 151–158.
    [2] H. S. Jhajj, M. K. Sharma, L. K. Grover, A family of estimators of population mean using information on auxiliary attribute, Pak. J. Stat., 48 (2006), 43.
    [3] A. M. Abd-Elfattah, E. A El-Sherpieny, S. M Mohamed, O. F Abdou, Improvement in estimating the population mean in simple random sampling using information on auxiliary attribute, Appl. Math. Comput., 215 (2010), 4198–4202.
    [4] N. Koyuncu, Efficient estimators of population mean using auxiliary attributes, Appl. Math. Comput., 218 (2012), 10900–10905.
    [5] R. S. Solanki, H. P. Singh, Improved estimation of population mean using population proportion of an auxiliary character. Chil. J. Stat., 4 (2013), 3–17.
    [6] P. Sharma, H. K. Verma, A. Sanaullah, R. Singh, Some exponential ratio-product type estimators using information on auxiliary attributes under second order approximation, Int. J. Stat. Econ., 12 (2013), 58–66.
    [7] S. Malik, R. Singh, An improved estimator using two auxiliary attributes, Appl. Math. Comput., 219 (2013), 10983–10986.
    [8] H. Verma, R. Singh, F. Smarandache, Some improved estimators of population mean using information on two auxiliary attributes, In: On improvement in estimating population parameter(s) using auxiliary information, Columbus: Educational Publishing, Beijing: Journal of Matter Regularity, 2013, 17–24.
    [9] R. S. Solanki, H. P. Singh, S. K. Pal, Improved estimation of finite population mean in sample surveys, Columbia Int. Publ. J. Adv. Comput., 1 (2013), 70–78.
    [10] P. Sharma, R. Singh, Improved ratio type estimator using two auxiliary variables under second order approximation, Math. J. Interdiscip. Sci., 2 (2014), 179–190. doi: 10.15415/mjis.2014.22014
    [11] M. Mahdizadeh, E. Zamanzade, Kernel-based estimation of p (x $>$ y) in ranked set sampling, SORT-Stat. Oper. Res. T., 40 (2016), 243–266.
    [12] H. P Singh, S. K. Pal, R. S. Solanki, A new class of estimators of finite population mean in sample surveys, Commun. Stat. Theor. Methods, 46 (2017), 2630–2637. doi: 10.1080/03610926.2015.1030429
    [13] M. Mahdizadeh, E. Zamanzade, Smooth estimation of a reliability function in ranked set sampling, Statistics, 52 (2018), 750–768. doi: 10.1080/02331888.2018.1477157
    [14] S. Hussain, S. Ahmad, S. Akhtar, A. Javed, U. Yasmeen, Estimation of finite population distribution function with dual use of auxiliary information under non-response, PloS One, 15 (2020), e0243584. doi: 10.1371/journal.pone.0243584
    [15] S. Al-Marzouki, C. Chesneau, S. Akhtar, J. A. Nasir, S. Ahmad, S. Hussain, et al., Estimation of finite population mean under pps in presence of maximum and minimum values, AIMS Mathematics, 6 (2021), 5397–5409. doi: 10.3934/math.2021318
    [16] B. Kiregyera, A chain ratio-type estimator in finite population double sampling using two auxiliary variables, Metrika, 27 (1980), 217–223. doi: 10.1007/BF01893599
    [17] S. Mohanty, J. Sahoo, A note on improving the ratio method of estimation through linear transformation using certain known population parameters, Sankhyā: Indian J. Stat. Ser. B, 1995, 93–102.
    [18] A. Haq, J. Shabbir. An improved estimator of finite population mean when using two auxiliary attributes, Appl. Math. Comput., 241 (2014), 14–24.
    [19] M. N. Murthy, Sampling theory and methods, Florida: CRC Press LLC, 1967.
    [20] S. Singh, Advanced sampling theory with applications, Springer Science and Business Media, 2003.
    [21] A. Sharmin, J. R. Sarker, K. R. Das, Growth and trend in area, production and yield of major crops of Bangladesh. Int. J. Econ. Financ. Manage. Sci., 4 (2016), 20–25.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1939) PDF downloads(67) Cited by(7)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog