In this paper, a swelling soil system with two nonlinear dampings of variable exponent-type is considered. The stability analysis of this system is investigated and it is proved that the system is stable under a natural condition on the parameters of the system and the variable exponents. It is noticed that one variable damping is enough to achieve polynomial and exponential decay and the decay is not necessarily improved if the system has two variable dampings.
Citation: Abdelaziz Soufyane, Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Imad Kissami, Mostafa Zahri. Stability results of a swelling porous-elastic system with two nonlinear variable exponent damping[J]. Networks and Heterogeneous Media, 2024, 19(1): 430-455. doi: 10.3934/nhm.2024019
In this paper, a swelling soil system with two nonlinear dampings of variable exponent-type is considered. The stability analysis of this system is investigated and it is proved that the system is stable under a natural condition on the parameters of the system and the variable exponents. It is noticed that one variable damping is enough to achieve polynomial and exponential decay and the decay is not necessarily improved if the system has two variable dampings.
[1] | D. Ieşan, On the theory of mixtures of thermoelastic solids, J. Therm. Stress., 14 (1991), 389–408. https://doi.org/10.1080/01495739108927075 doi: 10.1080/01495739108927075 |
[2] | R. Quintanilla, Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation, J. Comput. Appl. Math., 145 (2002), 525–533. https://doi.org/10.1016/S0377-0427(02)00442-9 doi: 10.1016/S0377-0427(02)00442-9 |
[3] | L. Payne, J. Rodrigues, B. Straughan, Effect of anisotropic permeability on Darcy's law, Math. Methods Appl. Sci., 24 (2001), 427–438. https://doi.org/10.1002/mma.228 doi: 10.1002/mma.228 |
[4] | R. L. Handy, A stress path model for collapsible loess, Genesis and Properties of Collapsible Soils, Dordrecht: Springer, 1995, 33–47. https://doi.org/10.1007/978-94-011-0097-7 |
[5] | R. Leonard, Expansive soils. Shallow Foundation, Kansas: Regent Centre, University of Kansas, 1989. |
[6] | A. C. Eringen, A continuum theory of swelling porous elastic soils, Int J Eng Sci, 32 (1994), 1337–1349. https://doi.org/10.1016/0020-7225(94)90042-6 doi: 10.1016/0020-7225(94)90042-6 |
[7] | A. Bedford, D. S. Drumheller, Theories of immiscible and structured mixtures, Int J Eng Sci, 21 (1983), 863–960. https://doi.org/10.1016/0020-7225(83)90071-X doi: 10.1016/0020-7225(83)90071-X |
[8] | J. M. Wang, B. Z. Guo, On the stability of swelling porous elastic soils with fluid saturation by one internal damping, IMA J Appl Math, 71 (2006), 565–582. https://doi.org/10.1093/imamat/hxl009 doi: 10.1093/imamat/hxl009 |
[9] | A. Ramos, M. Freitas, D. Almeida Jr, A. Noé, M. D. Santos, Stability results for elastic porous media swelling with nonlinear damping, J. Math. Phys., 61 (2020), 101505. https://doi.org/10.1063/5.0014121 doi: 10.1063/5.0014121 |
[10] | A. M. Al-Mahdi, M. M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), 140. https://doi.org/10.1186/s13661-019-1253-6 doi: 10.1186/s13661-019-1253-6 |
[11] | T. A. Apalara, General stability result of swelling porous elastic soils with a viscoelastic damping, Z Angew Math Phys, 71 (2020), 1–10. https://doi.org/10.1007/s00033-020-01427-0 doi: 10.1007/s00033-020-01427-0 |
[12] | A. Youkana, A. M. Al-Mahdi, S. A. Messaoudi, General energy decay result fora viscoelastic swelling porous-elastic system, Z Angew Math Phys, 73 (2022), 1–17. https://doi.org/10.1007/s00033-022-01696-x doi: 10.1007/s00033-022-01696-x |
[13] | T. A. Apalara, M. O. Yusuf, B. A. Salami, On the control of viscoelastic damped swelling porous elastic soils with internal delay feedbacks, J. Math. Anal. Appl., 504 (2021), 125429. https://doi.org/10.1016/j.jmaa.2021.125429 doi: 10.1016/j.jmaa.2021.125429 |
[14] | P. X. Pamplona, J. E. M. Rivera, R. Quintanilla, Stabilization in elastic solids with voids, J. Math. Anal. Appl., 350 (2009), 37–49. https://doi.org/10.1016/j.jmaa.2008.09.026 doi: 10.1016/j.jmaa.2008.09.026 |
[15] | A. Magãna, R. Quintanilla, On the time decay of solutions in porous-elasticity with quasi-static microvoids, J. Math. Anal. Appl., 331 (2007), 617–630. https://doi.org/10.1016/j.jmaa.2006.08.086 doi: 10.1016/j.jmaa.2006.08.086 |
[16] | J. Muñoz-Rivera, R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296–1309. https://doi.org/10.1016/j.jmaa.2007.06.005 doi: 10.1016/j.jmaa.2007.06.005 |
[17] | A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87 (2008), 451–464. https://doi.org/10.1080/00036810802035634 doi: 10.1080/00036810802035634 |
[18] | S. A. Messaoudi, A. Fareh, General decay for a porous-thermoelastic system with memory: the case of nonequal speeds, Acta Math. Sci., 33 (2013), 23–40. https://doi.org/10.1016/S0252-9602(12)60192-1 doi: 10.1016/S0252-9602(12)60192-1 |
[19] | T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457–471. https://doi.org/10.1016/j.jmaa.2017.08.007 doi: 10.1016/j.jmaa.2017.08.007 |
[20] | T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J Dyn Control Syst, 25 (2019), 311–322. https://doi.org/10.1007/s10883-018-9407-x doi: 10.1007/s10883-018-9407-x |
[21] | B. Feng, T. A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl., 470 (2019), 1108–1128. https://doi.org/10.1016/j.jmaa.2018.10.052 doi: 10.1016/j.jmaa.2018.10.052 |
[22] | B. Feng, M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, Math Mech Solids, 24 (2019), 2361–2373. https://doi.org/10.1177/1081286518757299 doi: 10.1177/1081286518757299 |
[23] | P. S. Casas, R. Quintanilla, Exponential decay in one-dimensional porous thermo-elasticity, Mech Res Commun, 32 (2005), 652–658. https://doi.org/10.1016/j.mechrescom.2005.02.015 doi: 10.1016/j.mechrescom.2005.02.015 |
[24] | M. Santos, A. Campelo, D. S. Almeida Júnior, On the decay rates of porous elastic systems, J Elast, 127 (2017), 79–101. https://doi.org/10.1007/s10659-016-9597-y doi: 10.1007/s10659-016-9597-y |
[25] | T. A. Apalara, General stability of memory-type thermoelastic timoshenko beam acting on shear force, Continuum Mech. Thermodyn., 30 (2018), 291–300. https://doi.org/10.1007/s00161-017-0601-y doi: 10.1007/s00161-017-0601-y |
[26] | F. Ammar-Khodja, A. Benabdallah, J. M. Rivera, R. Racke, Energy decay for timoshenko systems of memory type, J. Differ. Equ., 194 (2003), 82–115. https://doi.org/10.1016/S0022-0396(03)00185-2 doi: 10.1016/S0022-0396(03)00185-2 |
[27] | A. M. Al-Mahdi, M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, New decay results for a viscoelastic-type timoshenko system with infinite memory, Z Angew Math Phys, 72 (2021), 1–24. https://doi.org/10.1007/s00033-020-01446-x doi: 10.1007/s00033-020-01446-x |
[28] | E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213–259. https://doi.org/10.1007/s00205-002-0208-7 doi: 10.1007/s00205-002-0208-7 |
[29] | M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Heidelberg: Springer Berlin, 2000. |
[30] | S. Antontsev, Wave equation with $p(x, t)$-laplacian and damping term: existence and blow-up, Differ. Equ. Appl, 3 (2011), 503–525. https://doi.org/10.1016/j.crme.2011.09.001 doi: 10.1016/j.crme.2011.09.001 |
[31] | S. Antontsev, Wave equation with $p(x, t)$-laplacian and damping term: Blow-up of solutions, Cr Mecanique, 339 (2011), 751–755. https://doi.org/10.1016/j.crme.2011.09.001 doi: 10.1016/j.crme.2011.09.001 |
[32] | S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl Anal, 96 (2017), 1509–1515. https://doi.org/10.1080/00036811.2016.1276170 doi: 10.1080/00036811.2016.1276170 |
[33] | S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024–3041. https://doi.org/10.1016/j.camwa.2017.07.048 doi: 10.1016/j.camwa.2017.07.048 |
[34] | L. Sun, Y. Ren, W. Gao, Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources, Comput. Math. Appl., 71 (2016), 267–277. https://doi.org/10.1016/j.camwa.2015.11.016 doi: 10.1016/j.camwa.2015.11.016 |
[35] | S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Method. Appl. Sci., 45 (2020), 8389–8411. https://doi.org/10.1002/mma.7141 doi: 10.1002/mma.7141 |
[36] | A. M. Al-Mahdi, M. M. Al-Gharabli, M. Zahri, Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity, Math. Control Relat F, 13 (2023), 605–630. https://doi.org/10.3934/mcrf.2022010 doi: 10.3934/mcrf.2022010 |
[37] | A. Al-Mahdi, M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single non-linear variable exponent damping: theory and numerics, Z Angew Math Phys, 74 (2023), 72. https://doi.org/10.1007/s00033-023-01962-6 doi: 10.1007/s00033-023-01962-6 |
[38] | S. A. M. Muhammad, I. Mustafa, M. Zahri, Theoretical and computational results of a wave equation with variable exponent and time dependent nonlinear damping, Arab. J. Math., 10 (2020), 443–458. https://doi.org/10.1007/s40065-021-00312-6 doi: 10.1007/s40065-021-00312-6 |
[39] | Salim A. Messaoudi, Mostafa Zahri, Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities, Topol Methods Nonlinear Anal, 59 (2022), 851–866. https://doi.org/10.12775/TMNA.2021.039 doi: 10.12775/TMNA.2021.039 |