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Abstract: In this paper, a swelling soil system with two nonlinear dampings of variable exponent-
type is considered. The stability analysis of this system is investigated and it is proved that the system
is stable under a natural condition on the parameters of the system and the variable exponents. It is
noticed that one variable damping is enough to achieve polynomial and exponential decay and the
decay is not necessarily improved if the system has two variable dampings.
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1. Introduction

Our aim for this work was to investigate the stability analysis for a swelling soil through the
application of theory of the porous media. Precisely, we consider the following nonlinear swelling
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soil system:

02 = A1Zxx — Qalhy + Y7 |PV 22, = 0, in (0, 1) x (0, ),
puutt — A3Uyxyx — A2Txx +,8|ut|q(.)_2’/tt = 0’ in (0’ 1) X (O, OO),
1.1
u(x, 0) = o), 1s(x,0) = iy (x), 2%, 0) = 20(x), 24(x,0) = 21(x) x € [0, 1], (1)

2(0,1) = z(1,) = u(0,1) = u(1,1) =0 t>0,

where v, > 0 and the components z and u indicate the displacements of the fluid and the elastic
solid material, respectively. The densities of each component are represented by the positive constant
coeflicients p, and p,. The coefficients a, # 0, a; > 0, and a3 > 0 are positive constants that meet
some particular requirements. The variables p(-) and g(-) are exponent functions that satisfy additional
requirements that will be stated later.
This problem was proposed for the first time by Iecsan [1] and simplified by Quintanilla [2], as
follows:
{PzZn:Pu—Gl + F (12)

Pultyy = Poy + Gy + F,

where the functions (P, Gy, F;), in that order, stand for the partial tension, internal body forces, and
external forces, respectively, that are operating on the displacement. For (P,, G,, F»), but in the case of
acting on the elastic solid, the definition is analogous. The constitutive equations for partial tensions

are also provided by
P, |l ar az Zx
nl-[a sl ] a3
N— e’

A
where the matrix A has the positive definite property in the sense of aja; > a;. For more information
about swelling soils, we refer the reader to [3—7]. Regarding the stability, Quintanilla [2] established
an exponential decay for the system (1.2) where

Gl = G2 = é‘:(zt - ut)9 Fl = A3Zxxts F2 = 09

and & > 0 is the gain feedback. By using the spectral approach, Wang and Guo [8] obtained the
exponential stability result for the system (1.2) with

G =G,=0, F\=-py(x)z;, F2=0,

where y(x) is an internal viscous damping function with a positive mean. After that, Ramos et al. [9]
proved that the system (1.2) with

G =G, =F=0,F,=-y(®)gu)

is exponentially stable provided that the wave speeds of the system are equal. Regarding viscoelastic
swelling systems, Al-Mahdi and Al-Gharabli [10] and Apalara [11] obtained general decay results for
Systems (1.2) with

1
G =Gy =F, ZO,Fzz—fg(l—S)Mxx(X,S)dS
0
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for different classes of the relaxation function g. Similarly, Youkana et al. [12] considered the system
(1.2) with

f
G =G, =F,=0,F, = —f g(t—58)zu(x,8)ds
0

and they came up with a general decay result without imposing the system’s wave speed. Apalara et
al. [13] established a general decay result for the system (1.2) with

!
G] :flzt(x’t)+§21t(x’t_7),G2:OaFl :_f g(t_s)zxx(x’s)dsaFZZO,
0

without imposing the system’s wave speed. The reader is referred to related research for other outcomes
in porous elasticity systems, thermo-porous-elastic systems, Timoshenko systems, and other systems
[2,8,14-27].

Equations with varying exponents of nonlinearity have drawn increasing amounts of attention in
recent years. The applications to the mathematical modeling of non-Newtonian fluids are what have
sparked such strong interest. These fluids include electro rheological fluid, which can undergo
significant changes in response to an external electromagnetic field. A number of factors, including
density, temperature, saturation, electric field, and others, affect the variable exponent of nonlinearity.
We cite [28, 29] for further details on the electro-rheological fluids mathematical model. We briefly
mention a few of the many references [30-36] that discuss the existence, blow-up, and stability of
viscoelastic systems with variable exponents. Regarding swelling systems with variable exponents,
Al-Mahdi et al. [37] proved that the system (1.1) (with § = 0) is exponentially and polynomially
stable based on the range of the variable exponents. In the present work, we study the interaction
between the two nonlinear dampings of variable exponent type in the system (1.1). We prove that one
damping is enough to have exponential stability and two dampings do not improve the decay rates. In
addition to the stability analysis, we present some numerical examples to illustrate the stability theory.

2. Preliminary and assumptions

In this section, we take into account the following hypotheses:
e (Al): p,q :10,1] — [1, o) is a continuous function such that
p1 = essinf o p(x),  pa i= €sssup o 11P(X).
where 1 < p; < p(x) < p; < 0.

q1 = essinfepo.19(x), g2 1= €sssup, ¢y 1;9(X)

where 1 < ¢g; < g(x) < g, < oo. Additionally, by satisfying the log-Holder continuity condition
that is, for any A4 with 0 < A < 1, there exists a constant ¢ > 0 such that,

0
lf(x)— fO)| < ————, forall x,y € Q, with [x —y| < 4. (2.1)
log|x -yl

e (A2): The coefficients denoted by a;, i = 1, ..., 3 satisfy that a;a; — a% > 0.
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Throughout the paper, Q = [0, 1] and ¢ is a positive constant that depends on the coefficients of the
system (1.1).

Lemma 2.1. The energy of the problem (1.1) is defined by

1 !
E@r) = 5 f [pzztz + puuf + agui + alzi + 2a2zxux] dx, (2.2)
0

and it satisfies the following

1 1
quz_yj‘mwwx—ﬁfﬂmwuxsa (2.3)
0 0

Proof. The proof of Eq (2.3) is straightforward by multiplying (1.1) by z, and u, respectively,
integrating over the interval (0, 1), using integration by parts, and performing some modifications. O

3. The main results

In this section, we state our decay results in the following theorems:

Theorem 3.1. Assume that (AI-A2) hold and 1 < py,q, < 2. Then, the energy functional (2.2) satisfies
the for positive constants denoted by C;, i = 1,2, 3, and for any t > 0

Et)< —S— if y=0 and B #0;

(t+1)(%)

E(t)y< —2—, if y#0 and B=0;
(,_,.1)(2—/'1) (31)

E(r) < — if y#0 andB # 0.

where p; = min{py, q,}.

Theorem 3.2. Assume that (AI-A2) hold and p,,q; > 2. Then, the energy functional (2.2) satisfies
the for some positive constants A;, o, 1; > 0, i = 1,2,3 and for any t > 0

E@) <pe™, if y=0, B#0and g, = 2;
E(t) < e, if y#0, B=0and p, =2, (3.2)
E(t) <pze™™', if y+#0, f£0and p, =q> =2,
and
E()< —%=, if y=0, B#0andq, >2;
(z+1)(T)
E(t)y< —%—=, if y#0, B=0and p, >2;
(%) (3.3)
Et)< —F=, if vy#0, B#0and py,q2 > 2.
(z+1)(T)
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where p, = min{p,, ¢.}.

Theorem 3.3. Assume that (AI-A2) hold and p; > 2 and 1 < g, < 2. Then, the energy functional
(2.2) satisfies the for some positive constants denoted by ©; > 0, i = 1, ...,6, and for any t > 0

E(t) < —24 if y=0, B#0andq, > qi;

E(t) <the™!, if y+0, f=0and p, =2,

E@t) < ?42,2), if y#0, B=0and p, > 2.
GOV (3.4)

E(f) < — % if y#0, B#0, p, =2and q> > q;;

E@) < ”;2_2), if y#0, B#0, py>2and g 2 q.

4. Technical lemmas

In this section, we establish several lemmas needed for the proofs of our main results.

Lemma 4.1. Assume that (AI1-A2) hold. The functional

1 1
x1(t) = p; f 2z dx — %pu f u;z dx 4.1)
0 0

as

satisfies the for py,q, > 2 and any &, > 0

a c ! 1
X @ < ——fzidx+—fztzdx+glf utzdx+c,),2f |27 dx
2a3 0 81 0 0 0
1
+ f lu |V dx, 4.2)
0

and for 1 < py,q, < 2, the functional satisfies

X < -5 2dx+—f dx+81f 2dx+c7 f |2,/ dx
+ f ju ™V dx + cy? ( f |Zt|p(x)dx) + ( f Jut |q<X>dx) :
0 0

where oy = ajaz — a% > 0 and ¢ > 0 depends on ay, a,, as, py, p..

4.3)

Proof. By considering Eq (1.1) and integrating by parts, we obtain

1 Cl% 1 a 1
Xi@ = p; f zfdx—[al——] f Zdx — —p, f u;Z;dx
0 as [ Jo as 0
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1 1
+ a2f Zldx — azf Zydx —y Izzlp() z,zdx

B ﬁ f "z (4.4)

Using Young’s inequality, we get the for any £ > 0

a 1 1 az 1
——pu f u,z; dx < & f utzdx + 50y f ztzdx. 4.5)
as Jo 0 dera;y ~ Jo

Applying Young’s inequality with {(x) = pfg_)l and {*(x) = p(x) helps to estimate the last two terms in

(4.4) as follows: For a.e x € Q and any 6; > 0, we have

-2
27922,z < 811217 + ¢5, () |z P,

where
¢s,(x) = 8" (p(x)) "D (p(x) — 1P,

Hence,
- f 2zl Pz, dx < 6, f 2" dx + f cs, (O)|z "V dlx. (4.6)
Q Q Q
Next, using Eqs (2.2) and (2.3), Poincaré’s inequality and the embedding property, we get

f |Z|p(x)dx — |z|p(x)dx + |Z|p(x)dx
Q Q,

Q_

|z|P*dx + |z|P dx
Q

Sflzlpzdx+f|zlp'dx
Q Q

4.7
< Pl + @7
< (2l + el el
2 p1—-2 2 p2—2
<((FEO) +er(ZEO) e
a a
S C1||ZX||§7
where c, is the embedding constant,
Q. ={xeQ: x| =1}, Q ={xeQ:|z(x,0)] < 1)
and
2 p1—2 2 p2—2
¢ = (cfl(—E(O)) + cf2(—E(O)) ) 4.8)
a a
Then, Eqs (4.6) and (4.7) yield
—y f zlP 2z dx < 81eillzill; + f cs, (X)|z PP dx. (4.9)
Q Q
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Similarly, we can have

202

a _ a X
-5 f 2O udx < Sycillzl; + iﬁ f ¢s, ()|, *Vdx. (4.10)
as Q Cl3 Q

By combining all estimates (4.4)—(4.10), and selecting 6; = %, it follows that c5(x) remains bounded;
then, estimate (4.2) is established.
To prove Eq (4.3), we re-estimate the last two terms in Eq (4.4) as follows:
First, we set
Q={xeQ:px)<?2} and Q) ={xeQ: p(x)=>2}

— f Az PPz dx = — f 2z |P 2z, dx — f 22"z, dx. 4.11)
Q Q (0)]

We notice that on Q2;, we have

Then, we have

2p(x) =2 < p(x), and 2p(x)—2>2p, —2. 4.12)

Therefore, by using Young’s and Poincaré’s inequalities, then (4.12) leads to

_ 1 ~
- f ZlZzlp(x) ZZZdX <n |Z|2dx + 4— |Z[|2P(x) de
Q

Q n Jo,
2 [ 2p(x)-2 2p(x)-2
< 7llz.l; + ¢, f ARG dx+f |z,[*72dx
e Qr

2 2p1-2
<l +o| [ r@dxs [ e dx]

o oh
2 [ (x) 5\t
X
<nlldB + e, f P + f ) ]
L Q Ql—
| ) w Y
< llzidl; + ¢y flztl”dX+(f Iz,ll”dx) ]
LJQ QI_
| @ w,
X X
<nllzdR + f P + f e |
LJQ Q

Q ={xeQ:|z(x, =1} and Q] ={x € Q : |z(x,0)| < 1}. (4.14)

(4.13)

where

Next, we have the following for the case p(x) > 2

- f 22"V zdx < 7llzdl; + f (0" Vdx. (4.15)
Q) Q

Therefore, we conclude that

p1-1
Y f letlp(x)ztdxs2n||zx||§+y2c,,[ f |zt|"<x>dx+( f Iz,lp(")dx) ] (4.16)
Q Q Q
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Similarly, we can get

q1-1
_@p Zlu,l"(x)_zutdxs277||Zx||§+,826,7[ f |u,|”(x)dx+( f |ut|"(x)dx) ] 4.17)
as Jo Q Q

Selecting n = 3;:3’ that cs(x) remains bounded; and, then, combining Eqs (4.11)—(4.17), estimate (4.3)
is established. O

Lemma 4.2. Assume that (AI-A2) hold. The functional

1
Xx2(t) = —p; f Zzdx (4.18)
0

satisfies the for py > 2 and any &,,6, > 0O:

a3 1 2 1 2
a,+ — +c10, Zdx + & u dx
de, 0 0

+ ¥ f cs, (0lz"Vdx, (4.19)
Q

1
X, < —p; f z,zdx+
0

and for 1 < py < 2, the functional satisfies

a3 1 2 1 2
a+ — +c10, Zdx + & u dx
de) 0 0

-1

1 P1
+ 9 f s, (X" Pdx + cy? ( f |zt|”(x)dx) , (4.20)
Q 0

1
X, < —p; f z,zdx+
0

where cy is defined in Eq (4.8).

Proof. Direct computations using Eq (1.1) give

1 1 1
Xo() = —pzf ztzdx+ a f zidx+ Clgf el dx — yleztlp(x)_zz,dx 4.21)
0 0 0 Q

Hence, Young’s inequality and the same estimates for the last term in Eq (4.21) yield Eqs (4.19) and
(4.20). O

Lemma 4.3. Assume that (AI1-A2) hold. The functional

1 1
Xx3(0) = arp-py f uz; dx — ap,p; f zu; dx (4.22)
0 0

satisfies the for pi,q, > 2 and any n; > O:

a2 " 1 1 1 1
Xy < —% f widx + ¢y’ f lz|PVdx + ¢ f 22dx + cf? f ||, (4.23)
0 0 0 0
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and for 1 < p1,q, < 2, the functional satisfies

azu
x50 < sz zdx+c7’f|Z|p()dx+cf 2dx+c,8]‘|u|’4’()a’x

-1

+ c,B (f |1t Iq(x)dx) +cy (f |z I”(")dx) , (4.24)

where ¢ > 0 depends on ay, a,, as, py, P..

Proof. By exploiting (1.1), we have

1 1 1 1
2 2
20y f u;z; dx — ap,p. f Wz, dx — ara,py f U Zye dx — ayp, f u; dx
0 0 0 0

1 1 1
+ aazp, f Zultydx + a3p; f z2dx — azyp. f 2" zudx
0 0 0

1
+ axfp. f [, 992, zdl x. (4.25)
0

X5(1)

Using Young’s inequality, we get

1
az(a3pz—a1pu)f UZy dx < Zé)”f u; dx+5f zidx, (4.26)
0 0

where ¢ > 0 depends on ay, a», as, p,, p,. To estimate the last two terms in (4.25), we apply Young’s

inequality with Z(x) = pfg—)1 and /*(x) = p(x). So, for a.e x € Q and any &3 > 0, we have

-2
|Zt|p(X) iU S 63|M|P(X) + c(§3(x)|zt|p(X)a

where
¢ (1) = 85 " (p() P (p(x) = P,

Hence,
Putl f Uz, [Pz, dx < 65 f P dx + adp? f Cs,(0)|z/PVdx. (4.27)
Q Q Q

Using Eqs (2.2) and (2.3), Poincaré’s inequality and the embedding property, we find that

f ulPVdx = f P dx + f ulP @ dx
Q + Q_

< |u|P*dx + P dx

Sflulpzdx+f|u|p1dx
Q Q

|P1 |P2

(4.28)
< M lully" + B2yl

-2 -2 2
< (el + 227 ol

2 -2 2 P22
< (051 (_E(O)) + cfz(—E(O)) )||Mx||§
as as

2
S c3||ux”2»
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where ¢, is the embedding constant,
Q,={xeQ:|ulx,n|>1}, Q. ={xeQ:|ulx,1)] <1}
and
2 P12 2 p2—2
¢y = (cgl(—E(O)) ; ch(—E(O)) )
as as
Then, Eqs (4.27) and (4.28) yield
ap.y f ulz " z,dx < S3cslludl; + 9 f cs, ()2, Vdx.
Q Q
In the same way, we get
app f 2u " udx < wellz,ll; + B f Cay (V)| "Vdx,
Q Q

where ¢y, c; have been defined in Eqs (4.8) and (4.29).

(4.29)

(4.30)

(4.31)

2
Combining all of the above estimates and selecting 65 = ‘ifi - and w3 = ﬁ we arrive at Eq (4.23).
To prove Eq (4.24), we re-estimate the last two terms in Eq (4.25) as in the above calculations to
obtain
1 pi-1
—apuy f )z, PP zdx < 2ncslul; + v f cy(X)lzl? Odx + 720,, ( f Iztlp(x)dx) , (4.32)
Q Q 0
and
1 q1—-1
a3 f 2u " udx < 2¢y||z:ll; + B f ea(0)lu|"dx + B, ( f qul"(”dx) : (4.33)
Q Q 0
az . . .
Then, by selecting n = 82:; - and A = 2%1’ estimate (4.24) is established. O
Lemma 4.4. Assume that (A1-A2) hold. The functional
1
xa(®) = —pusf uu dx (4.34)
0
satisfies the for some € > 0, and q; > 2
1 1 2 pl 1
3 ea
xa(0 < —ep,,f u? dx + ﬂf Widx + —zf Zdx + cﬁzf |ut, |7V dx, (4.35)
0 2 Jo as Jo 0
and for1 < q, <2,
1 1 2l 1
3 ea
xai@® < —spuf u? dx + ) f wdx + — f 2dx + cp? f |ua, |7 dx
0 2 0 as Jo 0
1 q1—-1
+ ( f Iuth(x)dx) dx. (4.36)
0
Networks and Heterogeneous Media Volume 19, Issue 1, 430-455.



440

Proof. Direct computations using Eq (1.1) yield

1 1 1 1
xa.® = —pusf u,2 dx + ea; f ui dx + gay f Uz dx — sﬁf ulu,"Yu,dx. (4.37)

0 0 0 0
Estimates (4.35) and (4.36) can be established in a similar manner as for the above estimations. O

Lemma 4.5. Assume that (AI-A2) hold. If p,,q, > 2, then

1
f 2dx < —E'(t), ifpy =2,
0
1
f wrdx < —E'(t), ifq =2, (4.38)
0
and
1 2
f 2dx < —E'(O) +c(=E' ()72, if pr>2
0
1
f W2dx < —E'(t) + c(~E'0)® , if g > 2. (4.39)
0

Proof. By recalling Eq (2.3), it is easy to establish Eq (4.38). To prove the first estimate in Eq (4.39),
we set the following partitions

Q={xeQ:lz/>1} and Qb ={xeQ:|z| <1} (4.40)
Using the Holder and Young inequalities and Eq (2.2), we obtain the following for €,
Jo, zdx < [ 124" dx = —E' (1), (4.41)

and for Q,, we get

f Z7dx
Q)

2

)
Q

C( j2. /P dx) s(:( f 2P dx) =c(-E'(t)r . (4.42)
Q Q

IA

IA

Combining Eqs (4.41) and (4.42), the first estimate in Eq (4.39) can be established ; also, repeat the
same steps to establish the second estimate in Eq (4.39). O

5. Proofs of the main results

In this section, we prove our decay results in Theorems 3.1, 3.2 and 3.3.

Networks and Heterogeneous Media Volume 19, Issue 1, 430-455.
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5.1. Proof of Theorem 3.1
Proof. To prove Theorem 3.1, let

L(1) = pE®@) + px1(2) + poxa(0) + uaxs(t) + paxa(t) (5.1)

where u, iy, 1o, 13, 4 are positive constants to be properly chosen. By taking the derivative of the
functional £ and using all of the above estimates (4.2)—(4.35), we obtain

3 1
L < - /l3g — & — s f uldx
2 2 ),
AN
(/ll— —,uz— — €102ty — Uz — — )f 2 dx
as 0
(Pz/lz —,ul—)
0

1 1 pP1
[y = v = ey’ua = oy’ f 2 l"Vdx + ey ( f Iztl"(’“’dx)
0 0

1 1 qi-1
- [ - ou - o] [ o e’ ( | |u,|q<x>dx)
0 0

1 1
Z,de — (epapy — 81#1)[ M,de
0

-1

Choosing &; = u;, i = 1,2, and 6, = #iz, the above estimate becomes

3 1
£ <=5 -8~ 22 [*iias
2 2 1),

( a 861%/.14) fl )
Himz— —C—C| —CU3 — Zdx
2a; as 0
1 1
— (o2 = ©) f gdx — (pap, — 113) f jdx
0 0

1 1 p1
= |y = Vi = V1 - ey’ s | f lz"Vdx + cy? ( f Iztl”“‘)dx)
0 0

-1
1 1 qi-1

= B~ B ~ Bz ~ Bpus] f 1| *Odx + f? ( f |ut|q<x)dx)
0 0

First, we select i, such that

pzﬂ2_5> L.

Then, we choose 3 large enough such that
a
A= /.135 —/,tg > 0.

Next, we choose u; large enough such that

a
Ay i=py— —c—cy —cuz > 0.
2a;
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Now, we choose 4 such that

papu — 17 > 1.

Select & such that

2A1 Cl3A2 ]

£ = min ,
[3613#4 3asyis

After fixing u;, where i = 1,2, 3,4, we select u large enough such that

yu— Y’ — ¢y’ — cy’us > 1,

Bu — By — By — By > 1,
and L ~ E. That is, we can find two positive constants a; and @, such that
E@) <L) <apE(1),

On the other hand, Young’s inequality and (2.2) allow us to obtain

1
- 2,2 .2, 2
E@)< Cfo (u, +ui+z; +zx)dx.

Hence, estimate (5.2) becomes as follows for any ¢ > 0 and some positive constant a3,

pi-1

1 1
L)< - f (uzz +ul+ 7+ Zi) dx + cy? (f Iztlp(x)dx)
0 0

1 q1-1
+ 0,82 (f Iuth(x)dx) .
0

Then, from Eqgs (5.3) and (5.4), we get the following for some positive constant ay,

-1

1 pi—1 1 q
L(t) < —a4E(f) + ¢cy? (f Iztlp(x)dx) + (f Iuth(x)dx) , 1>0.
0 0

Thanks to Eq (5.2), we get the following for any ¢ > 0 and some positive constant as,

q1-1

, o (g Y 2 (1, 1@
L0 <-asL@+er ([ lpvdx) o+ o8 ([} fedx)
Recalling Eq (2.3) and multiplying the above equation by E“(¢), where a > 0, we obtain

E*(0)L(1) < —asE°' (1) + ey E°()( = E'(0)"' ™" + BPE“()( - E'(0)"

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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e If y =0 and g # 0, then we have
E*(1)L'(1) < —asE™ (1) + ¢B2E“()( - E'(1)" . (5.7)
Using Young’s inequality with ¢ = m+1 and {* = ﬁ, for any £ > 0, we have
E“(O)L(t) < —asE™(E) + aseET1 () + co( — E'(1)). (5.8)
Taking a = ;_—_qi > (0, we have
E*(L(t) < —as(1 = &)E™ (1) + co(— E'(1)). (5.9)
By taking &£ small enough Eq (5.9) becomes:
L) € —agE* (),  Vt>0, (5.10)
where £, = E*L + cE ~ E. Integrating (5.10) over (0, ¢), we obtain

qu
EQ@) < Vi>0, (5.11)

19

(t+1)a

where a = z:—fi. Then the first estimate in Eq (3.1) is proved.
e Ify # 0 and S = 0, then we have

E“()L(1) < —asE* (1) + cy*E“()( - E' @) . (5.12)

The proof of the second estimate in (3.1) is straightforward. obtained in a similar manner as for
the above one.
o If y # 0 and 8 # 0O, then we have

EY()L(1) < —asE™ (1) + aseETn + aseE™0 + co( — E'(1)). (5.13)

Now, we discuss two cases:
Case I: If p| > gy, then

@ a alq1-p1)
E()L(f) < —asE° (1) + aseETr + aseETn ETntan + ¢ (- E'(f)). (5.14)

Since E is non-increasing, then we get

@ @ a(q1-r1)
E(0L(1) < —asE™(1) + aseE™n + aseE™n E(0)Tnem + ¢y — E'(1)). (5.15)
Then, Eq (5.15) becomes

E“()L(1) < —~asE™(t) + aseETn + caseE™n + 2¢.( — E'(1)). (5.16)
From Eq (5.16), we have

EY(OL (1) < —as(l — & — ce)E*(t) + c.( — E'(1)). (5.17)
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By taking &£ small enough Eq (5.17) becomes:
Li(t) < —agE™' (1), V=0, (5.18)

where £, = E*L + cE ~ E. Integrating (5.25) over (0, 1), we get

c
E()< —2—,V1t>0, (5.19)
(t+ 1)«
where @ = £,
pi-1
Case 2: If g; < p;, we will get
C
Ef)< —2—,V1t>0, (5.20)
(t+ 1)«
where @ = 51__:1; > 0. So, by taking p, = min{py, g}, the proof of the last estimate in Eq (3.1) is
completed.

5.2. Proof of Theorem 3.2

Proof. To prove Theorem 3.2, we reformulate the integrals fol Z>dx and fol u?dx in Eq (5.2) and recall
pi-1 q

that the integrals (fol IZ,IP(x)dx) and (fol Iu,lq(X)dx)

1
L@ <—|ms -2 - Setals f udx
2 2 ),

2 1

o _ _ a5y

—(IJ1——C—61—C,U3— 2 )fzidx
2(13 as 0

1 1 1 1
— P2 f 22dx — guap, f urdx + Ef Zdx + 13 f uldx (5.21)
0 0 0 0

1
~ = i = v’ - s f 2" dx
0

1
are not relevant in this situation; thus, we have

1
— [Bu = B - Bz — B f g dx.
0

We shall prove the case that y, 8 # 0 and the other cases will be straightforward by letting either y = 0
or 8 =0. Let us select u, = 1 and guy = 1. Then it is easy to select uz and then y;; finally, we can
select u large enough such that estimate (5.21) becomes

LO<pf (@+12+2+2)dx+T [ 2dx+T [ wdx, ¥1>0 (5.22)
and for two positive constants 3, and 83,

BE(1) < L() <BE(D), (5.23)
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By recalling Poincaré’s inequality and the energy functional defined in Eq (2.2), estimate Eq (5.22)

becomes, for a positive constant Sy,
L)< BEM+T [ 2dx+¢ [ uldx, Vi>0,
and thanks to Eq (5.23), we get the following for any ¢ > 0
L)< -BsLM+¢C fol Zdx+7c fol udx.

Here, we will discuss two cases:

Case I: If p, = g, = 2, then by using Lemma 4.5, we have
L (1) £ —Bs L) + c(=E'(1)).

This gives
L) < —psL(1).

(5.24)

where £, = (L + cE) ~ E. Integrating the last estimate over the interval (0,7) and using the

equivalence properties £, L ~ E, the proof of the last estimate in (3.4) is completed.

Case II: If p,, g, > 2, then by using Lemma 4.5, we have

L) < —Bs LG + (~E (D)7 + (—E'(1))® .

— n—2

5 > 0, we obtain

Multiplying the last equation by E* where «
E9L (1) < —BsE°L (1) + E° (~E'(1)7 + E* (—E'(£))% .
Applying Young’s inequality twice, we obtain the following for £ > 0
EL () < —asE“ L (1) + sEn7 + gEn + Cy (—E/(1)).

We will discuss two cases:
Case A: If p, < g, we will have

ap: apy 2a(pr-q2)

E*L' (1) < —asE“' L) + cEn? + gEn2 Em 2w 4 C.(=E'(v)).

Using the non-increasing property of E, we get
E°L ()< —(as—e—ce) E*' L) + C. (E'(1)) .
Taking & small enough, the above estimate becomes:
L(1) S —BE™' (1), V120,

where L, = E*L +cE ~ E.
Integration over (0, ¢), using E ~ £, gives

E(t) < — 2 yis0
(t+ DY’ ’

(5.25)

(5.26)
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2

where o = ”ZT_.

Case B: If ¢, < p,, we will get

C,
E@) < ﬁ Yi>0, (5.27)

=2

where a = “5=. So, by taking p, = min{p,, g»}, the proof of the last estimate in Eq (3.3) is completed.

O

5.3. Proof of Theorem 3.3

The proof of this theorem can be obtained by repeating proofs similar to those in Theorem 3.1 and
Theorem 3.2.

6. Numerical Tests

In the numerical part of this paper, we computationally justify our theoretical results form Theorems
3.1, 3.2 and 3.3. We examine the suggested fourteen cases according to our theorems. For the spatial
and temporal discretization of the system (1.6) , we use a second-order finite difference method in
time and space for the space-time domain [0, L] X [0, T,] = [0, 1] X [0, 10]. Thereafter, we implement
the conservative Lax-Wendroff scheme. Finally, we discuss the computational confirmation of our
theoretical results. Moreover, we compare these fourteen tests accordingly. We would also like to
mention that, for references for similar construction, we invite the readers to see [36—39]. According
to the assumptions and conditions of our theorems, we chose to simulate the temporal evolution of the
waves for the following tests:

From Theorem 3.1, we examine the following cases
e TEST 1:
1) pu=Lp,=1;v=0;8=1;a; =2;a, =0.5; and a3 = 2.
(i) p(x) =¢g(x) =2 -
o TEST 2:
1) pu=lip,=lLy=1;=0;a, =2;a, =0.5; and a; = 2.
(i) p(x) =qx) =2 -
o TEST 3:
1) pu=Lp,=Ly=1L8=1,a1=2;a,=0.5; and a3 = 2.
(i) p(x) =qx) =2 -

1+x

1+x

1+x
From Theorem 3.2, we examine the following cases

e TEST 4:
1) pu=lp,=1;y=0;8=1;a, =2;a, =0.5; and a; = 2.
(i) p(x) =2+ T and g(x) = 2.

e TEST S:

+ X
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D) pu=Lp,=Ly=1B=0;a1 =2;a, =0.5;and a3 = 2.
1
(i) g(x) =2+ and p(x) = 2.
1+x
e TEST 6:

1) p.=Lp,=L;y=1,8=1;a;, =2;a, =0.5; and a3 = 2.
(i) g(x) = p(x) = 2.

e TEST 7:
1) pu=lip,=1;y=0;8=1;a, =2;a, =0.5; and a; = 2.
(i) p(x) =2 and g(x) =2 +

e TEST 8:

1) pu=lp,=Ly=1;=0;a, =2;a, =0.5; and a3 = 2.
(i1) g(x) =2 and p(x) =2 +

e TEST9:

1) p.=lLip,=lLy=1;8=1;a, =2;a, =0.5;and a3 = 2.
(i1) g(x) = p(x) =2 +

1+x

1+x

1+x

From Theorem 3.3, we examine the following cases

e TEST 10:
1) pu=lip,=1L;y=0;8=1;a; =2;a, =0.5; and a3 = 2.

1
i =2 =2- .
(1) p(x) + T and ¢g(x) T
e TEST 11:
() pu=Lp,=1Ly=16=0;a =2;a, =0.5; and a3 = 2.
(ii) g(x) =2 - and p(x) = 2.
1+x
e TEST 12:

1) pu=lip,=1Ly=1;=0;a, =2;a, =0.5; and a; = 2.
(i) g(x) =2 -
e TEST 13:
1) pu=Lp,=1L;vy=1;8=1l;a1 =2;a, = 0.5; and a3 = 2.
(i) g(x) =2+ and p(x) = 2.
e TEST 14:
1) pu=lLip,=Ly=1;=1;a, =2;a, =0.5; and a; = 2.
(i) g(x) =2 + -

1
d =2 .
l+xan ) +1+x

1+x

d =2+ .
+xan P(x) 1+x

To ensure the numerical stability of the implemented numerical scheme, we chose to design our code
to satisfy the spatiotemporal Courant-Friedrichs-Lewy (CFL) condition, given as At < 0.5Ax, where
At represents the time step and Ax is the spatial step. The spatial interval [0, 1] has been subdivided
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into 500 subintervals, whereas the temporal interval [0, T,] = [0, 10] was deduced from the stability
condition above. We ran our code for 20000 time steps by using the following initial conditions:

u(x,0) = (1 — x)x and u,(x,0) =0 in [0, 1]. (6.1)
z(x,0) = sin(zrx) and z,(x,0) =0 in [0, 1].

. Energy: Test 1. u(x,t) cut at 0.25 z(z,t) cut at 0.25
1 - - - - - - - 05 - - - - -
=20 N\' } 50
5 14 . . . . . . . . . 05 . . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t x10* t x10*

u(x,t) cut at 0.5 z(z,t) cut at 0.5

8 0

. 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t x10* t x10*
u(z,t) cut at 0.75 z(z,t) cut at 0.75

4 ] 1 - - ‘ 05
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0 . - a . . . . . . . . . 05 . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t x10* t x10* t x10*

Figure 1. TEST 1, The cross sections for temporal behavior of the solutions u, z and the
corresponding polynomial decay of the energy function.
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1 - - : ; : . : : - 05 - - : ; : . :
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0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
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?
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u(z,t) cut at 0.75 z(z,t) cut at 0.75

1 ] 1 T T T T - - - T T ‘ 05 T T T T - - - ‘
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0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t x10* t x10* t x10*

Figure 2. TEST 2, The cross sections of the behavior for waves u, z and the corresponding
polynomial decay of the energy function.

Energy: Test 3. u(z,t) cut at 0.25 z(x,t) cut at 0.25

20

o
o
o
oL 4
N
oL i
IS

0 02 04 06 08 1 12 14 16 18 2
t x10* t x10
u(z,t) cut at 0.5

8 0

o
o
5

, T s ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4 4

2 7 t %10 t x10
u(z,t) cut at 0.75

1 R . . ‘ 05 , : : ‘
=0 M ‘ & 0 V\/\ ‘

o 4 . . . . . . . . . 05 . . . . .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t x10* t x10* t x10*

Figure 3. TEST 3, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.

In the first block of the numerical Tests 1-3, we examined the polynomial decay of the energy
derived from u and z. These results were proved in Theorem 3.1. Given the initial and boundary
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conditions 6.1 and the parameters mentioned above (see TEST 1-3, (i) and (ii)), in Figures 1-3,we

have plotted the energy function and the three cross sections at x =
polynomial decay of the energy is clearly assured.
In the second block of the numerical Tests 4-6, we evaluated the

0.25,0.5 and at 0.75, where the

polynomial decay of the energy.

These results were proved in Theorem 3.2. Given the same initial and boundary conditions in 6.1 for
TEST 4-6, (i) and (ii), in Figures 4-6, we have plotted the energy function and the three cross sections
at x = 0.25,0.5 and 0.75, where the exponential decay of the energy has been numerically proved.

Energy: Test 4.
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Figure 4. TEST 4, The cross sections of the wave behavior for u, z and the corresponding
exponential decay of the energy function.
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Figure 5. TEST 5, The cross sections of the wave behavior for u, z and the corresponding
exponential decay of the energy function.
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Figure 6. TEST 6, The cross sections of the wave behavior fo
exponential decay of the energy function.

In the third block of the numerical Tests 7-9, we examine again th
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These results have been proven in the last three cases of Theorem 3.2. Given the same initial and
boundary conditions in 6.1 and the parameters mentioned above (see TEST 7-9, (i) and (ii)), in Figures
7-9, we have plotted the energy function and the three cross sections x = 0.25,0.5, and 0.75, where
the polynomial decay of the energy has been numerically proved.
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Figure 7. TEST 7, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 8. TEST 8, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 9. TEST 9, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.

In the fourth block of the numerical Tests 10—14, we examined other cases leading to the polynomial
decay of the energy. These results have been proven in the last three cases of Theorem 3.3. Under the
same initial and boundary conditions in 6.1 and the parameters mentioned above (see TEST 10-14,
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(1) and (i1)), in Figures 10-14, we have plotted the energy function and the three cross sections at
x = 0.25,0.5 and 0.75, where the polynomial decay of the energy has been numerically proved.

Finally, it should be stressed that our numerical simulations show the energy decay that was proved
in Theorems 3.1, 3.2 and 3.3. Obviously, in some cases the polynomial decay could be easily deduced
from the exponential decay behavior of the energy. This result can be accepted, since the required and
expected result is the polynomial one. We are pretty sure that for other choices of the initial solutions
and a rigorous choice of the functional parameters, we could get a clear discrepancy between the energy
functions reflecting the polynomial and exponential decays.
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Figure 10. TEST 10, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 11. TEST 11, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 12. TEST 12, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 13. TEST 13, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.
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Figure 14. TEST 14, The cross sections of the wave behavior for u, z and the corresponding
polynomial decay of the energy function.

7. Conclusion

In this study, we considered a swelling elastic system with two nonzero dampings of the variable
exponent type. We discussed different cases and proved that the system is exponentially and
polynomially stable, and that the stability results depend on the values of p1, ps, g1, ¢>. In addition, we

conclude that the decay estimate is not necessarily improved if the system has two dampings.
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