Research article

Stability results of a swelling porous-elastic system with two nonlinear variable exponent damping

Abdelaziz Soufyane ${ }^{1}$, Adel M. Al-Mahdi ${ }^{2,3}$, Mohammad M. Al-Gharabli ${ }^{2,3}$, Imad Kissami ${ }^{4}$ and Mostafa Zahri ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, College of Sciences, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates
${ }^{2}$ Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
${ }^{3}$ The Interdisciplinary Research Center in Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
${ }^{4}$ College of Computing, Mohammed VI Polytechnic University, Lot 990 Hay Moulay Rachid, Benguerir 43150, Morocco

* Correspondence: Email: mzahri@sharjah.ac.ae.

Abstract

In this paper, a swelling soil system with two nonlinear dampings of variable exponenttype is considered. The stability analysis of this system is investigated and it is proved that the system is stable under a natural condition on the parameters of the system and the variable exponents. It is noticed that one variable damping is enough to achieve polynomial and exponential decay and the decay is not necessarily improved if the system has two variable dampings.

Keywords: swelling soil; Enemy method; asymptotic behavior; variable exponents

1. Introduction

Our aim for this work was to investigate the stability analysis for a swelling soil through the application of theory of the porous media. Precisely, we consider the following nonlinear swelling
soil system:

$$
\begin{cases}\rho_{z} z_{t t}-a_{1} z_{x x}-a_{2} u_{x x}+\gamma\left|z_{t}\right|^{p(\cdot)-2} z_{t}=0, & \text { in }(0,1) \times(0, \infty), \tag{1.1}\\ \rho_{u} u_{t t}-a_{3} u_{x x}-a_{2} z_{x x}+\beta\left|u_{t}\right|^{q(\cdot)-2} u_{t}=0, & \text { in }(0,1) \times(0, \infty), \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), \quad z(x, 0)=z_{0}(x), z_{t}(x, 0)=z_{1}(x) & x \in[0,1], \\ z(0, t)=z(1, t)=u(0, t)=u(1, t)=0 & t \geq 0,\end{cases}
$$

where $\gamma, \beta \geq 0$ and the components z and u indicate the displacements of the fluid and the elastic solid material, respectively. The densities of each component are represented by the positive constant coefficients ρ_{u} and ρ_{z}. The coefficients $a_{2} \neq 0, a_{1}>0$, and $a_{3}>0$ are positive constants that meet some particular requirements. The variables $p(\cdot)$ and $q(\cdot)$ are exponent functions that satisfy additional requirements that will be stated later.

This problem was proposed for the first time by Iecsan [1] and simplified by Quintanilla [2], as follows:

$$
\left\{\begin{array}{l}
\rho_{z} z_{t t}=P_{1 x}-G_{1}+F_{1} \tag{1.2}\\
\rho_{u} u_{t t}=P_{2 x}+G_{2}+F_{2}
\end{array}\right.
$$

where the functions (P_{1}, G_{1}, F_{1}), in that order, stand for the partial tension, internal body forces, and external forces, respectively, that are operating on the displacement. For $\left(P_{2}, G_{2}, F_{2}\right)$, but in the case of acting on the elastic solid, the definition is analogous. The constitutive equations for partial tensions are also provided by

$$
\left[\begin{array}{l}
P_{1} \tag{1.3}\\
P_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right]}_{A}\left[\begin{array}{l}
z_{x} \\
u_{x}
\end{array}\right],
$$

where the matrix A has the positive definite property in the sense of $a_{1} a_{3} \geq a_{2}^{2}$. For more information about swelling soils, we refer the reader to [3-7]. Regarding the stability, Quintanilla [2] established an exponential decay for the system (1.2) where

$$
G_{1}=G_{2}=\xi\left(z_{t}-u_{t}\right), \quad F_{1}=a_{3} z_{x x t}, \quad F_{2}=0,
$$

and $\xi>0$ is the gain feedback. By using the spectral approach, Wang and Guo [8] obtained the exponential stability result for the system (1.2) with

$$
G_{1}=G_{2}=0, \quad F_{1}=-\rho_{z} \gamma(x) z_{t}, \quad F_{2}=0,
$$

where $\gamma(x)$ is an internal viscous damping function with a positive mean. After that, Ramos et al. [9] proved that the system (1.2) with

$$
G_{1}=G_{2}=F_{1}=0, F_{2}=-\gamma(t) g\left(u_{t}\right)
$$

is exponentially stable provided that the wave speeds of the system are equal. Regarding viscoelastic swelling systems, Al-Mahdi and Al-Gharabli [10] and Apalara [11] obtained general decay results for Systems (1.2) with

$$
G_{1}=G_{2}=F_{1}=0, F_{2}=-\int_{0}^{t} g(t-s) u_{x x}(x, s) d s
$$

for different classes of the relaxation function g. Similarly, Youkana et al. [12] considered the system (1.2) with

$$
G_{1}=G_{2}=F_{2}=0, F_{1}=-\int_{0}^{t} g(t-s) z_{x x}(x, s) d s
$$

and they came up with a general decay result without imposing the system's wave speed. Apalara et al. [13] established a general decay result for the system (1.2) with

$$
G_{1}=\xi_{1} z_{t}(x, t)+\xi_{2} z_{t}(x, t-\tau), G_{2}=0, F_{1}=-\int_{0}^{t} g(t-s) z_{x x}(x, s) d s, F_{2}=0
$$

without imposing the system's wave speed. The reader is referred to related research for other outcomes in porous elasticity systems, thermo-porous-elastic systems, Timoshenko systems, and other systems [2, 8, 14-27].

Equations with varying exponents of nonlinearity have drawn increasing amounts of attention in recent years. The applications to the mathematical modeling of non-Newtonian fluids are what have sparked such strong interest. These fluids include electro rheological fluid, which can undergo significant changes in response to an external electromagnetic field. A number of factors, including density, temperature, saturation, electric field, and others, affect the variable exponent of nonlinearity. We cite $[28,29]$ for further details on the electro-rheological fluids mathematical model. We briefly mention a few of the many references [30-36] that discuss the existence, blow-up, and stability of viscoelastic systems with variable exponents. Regarding swelling systems with variable exponents, Al-Mahdi et al. [37] proved that the system (1.1) (with $\beta=0$) is exponentially and polynomially stable based on the range of the variable exponents. In the present work, we study the interaction between the two nonlinear dampings of variable exponent type in the system (1.1). We prove that one damping is enough to have exponential stability and two dampings do not improve the decay rates. In addition to the stability analysis, we present some numerical examples to illustrate the stability theory.

2. Preliminary and assumptions

In this section, we take into account the following hypotheses:

- (A1): $p, q:[0,1] \rightarrow[1, \infty)$ is a continuous function such that

$$
p_{1}:=\operatorname{essinf}_{x \in[0,1]} p(x), \quad p_{2}:=\operatorname{esssup}_{x \in[0,1]} p(x) .
$$

where $1<p_{1} \leq p(x) \leq p_{2}<\infty$.

$$
q_{1}:=\operatorname{essinf}_{x \in[0,1]} q(x), \quad q_{2}:=\operatorname{esssup}_{x \in[0,1]} q(x) .
$$

where $1<q_{1} \leq q(x) \leq q_{2}<\infty$. Additionally, by satisfying the log-Hölder continuity condition that is, for any λ with $0<\lambda<1$, there exists a constant $\delta>0$ such that,

$$
\begin{equation*}
|f(x)-f(y)| \leq-\frac{\delta}{\log |x-y|}, \text { for all } x, y \in \Omega, \text { with }|x-y|<\lambda . \tag{2.1}
\end{equation*}
$$

- (A2): The coefficients denoted by $a_{i}, i=1, \ldots, 3$ satisfy that $a_{1} a_{3}-a_{2}^{2}>0$.

Throughout the paper, $\Omega=[0,1]$ and \bar{c} is a positive constant that depends on the coefficients of the system (1.1).
Lemma 2.1. The energy of the problem (1.1) is defined by

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{1}\left[\rho_{z} z_{t}^{2}+\rho_{u} u_{t}^{2}+a_{3} u_{x}^{2}+a_{1} z_{x}^{2}+2 a_{2} z_{x} u_{x}\right] d x \tag{2.2}
\end{equation*}
$$

and it satisfies the following

$$
\begin{equation*}
E^{\prime}(t)=-\gamma \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)} d x-\beta \int_{0}^{1}\left|u_{t}\right|^{q \cdot)} d x \leq 0 \tag{2.3}
\end{equation*}
$$

Proof. The proof of Eq (2.3) is straightforward by multiplying (1.1) by z_{t} and u_{t} respectively, integrating over the interval $(0,1)$, using integration by parts, and performing some modifications.

3. The main results

In this section, we state our decay results in the following theorems:
Theorem 3.1. Assume that (A1-A2) hold and $1<p_{1}, q_{1}<2$. Then, the energy functional (2.2) satisfies the for positive constants denoted by $C_{i}, i=1,2,3$, and for any $t>0$

$$
\left\{\begin{array}{l}
E(t)<\frac{C_{1}}{{ }_{(t+1)}^{\left(\frac{q_{1}-q_{1}}{2-q_{1}}\right)},} \text { if } \gamma=0 \text { and } \beta \neq 0 \tag{3.1}\\
E(t)<\frac{C_{2}}{(t+1)^{\left(\frac{p_{1}-1}{2-p_{1}}\right)},} \text { if } \gamma \neq 0 \text { and } \beta=0 \\
E(t)<\frac{C_{3}}{{ }_{(t+1)^{\left(\frac{p_{1}-1}{2-\bar{p}_{1}}\right)}}^{2\left(\frac{1}{2}\right)}, \text { if } \gamma \neq 0 \text { and } \beta \neq 0}
\end{array}\right.
$$

where $\bar{p}_{1}=\min \left\{p_{1}, q_{1}\right\}$.
Theorem 3.2. Assume that (A1-A2) hold and $p_{1}, q_{1} \geq 2$. Then, the energy functional (2.2) satisfies the for some positive constants $\lambda_{i}, \sigma_{i}, \mu_{i}>0, i=1,2,3$ and for any $t \geq 0$

$$
\begin{cases}E(t)<\mu_{1} e^{-\lambda_{1} t}, & \text { if } \gamma=0, \beta \neq 0 \text { and } q_{2}=2 \tag{3.2}\\ E(t)<\mu_{2} e^{-\lambda_{2} t}, & \text { if } \gamma \neq 0, \beta=0 \text { and } p_{2}=2 \\ E(t)<\mu_{3} e^{-\lambda_{3} t}, & \text { if } \gamma \neq 0, \beta \neq 0 \text { and } p_{2}=q_{2}=2\end{cases}
$$

and

$$
\left\{\begin{array}{l}
E(t)<\frac{\sigma_{1}}{(t+1)^{\left(\frac{q_{2}-2}{2}\right)}}, \text { if } \gamma=0, \beta \neq 0 \text { and } q_{2}>2 \tag{3.3}\\
E(t)<\frac{\sigma_{2}}{(t+1)^{\left(\frac{p_{2}-2}{2}\right)}}, \text { if } \gamma \neq 0, \beta=0 \text { and } p_{2}>2 \\
E(t)<\frac{\sigma_{3}}{{ }_{(t+1)}\left(\frac{\bar{p}_{2}-2}{2}\right)}, \text { if } \gamma \neq 0, \beta \neq 0 \text { and } p_{2}, q_{2}>2
\end{array}\right.
$$

where $\bar{p}_{2}=\min \left\{p_{2}, q_{2}\right\}$.
Theorem 3.3. Assume that (A1-A2) hold and $p_{1} \geq 2$ and $1<q_{1}<2$. Then, the energy functional (2.2) satisfies the for some positive constants denoted by $\vartheta_{i}>0, i=1, \ldots, 6$, and for any $t \geq 0$

$$
\begin{cases}E(t)<\frac{\vartheta_{1}}{\left.(t+1)^{\left(q_{1}-1\right.} 2-q_{1}\right)} & \text { if } \gamma=0, \beta \neq 0 \text { and } q_{2} \geq q_{1} \tag{3.4}\\ E(t)<\vartheta_{2} e^{-\vartheta_{3} t}, & \text { if } \gamma \neq 0, \beta=0 \text { and } p_{2}=2 \\ E(t)<\frac{\vartheta_{4}}{(t+1)^{\left(\frac{p_{-2}-2}{2}\right)},} \text { if } \gamma \neq 0, \beta=0 \text { and } p_{2}>2 \\ E(t)<\frac{\vartheta_{5}}{{ }_{(t+1)^{\left(\frac{q_{1}-1}{2-q_{1}}\right)}}} \text { if } \gamma \neq 0, \beta \neq 0, p_{2}=2 \text { and } q_{2} \geq q_{1} \\ E(t)<\frac{\vartheta_{6}}{(t+1)^{\left(\frac{p-2}{2}\right)}}, & \text { if } \gamma \neq 0, \beta \neq 0, p_{2}>2 \text { and } q_{2} \geq q_{1}\end{cases}
$$

4. Technical lemmas

In this section, we establish several lemmas needed for the proofs of our main results.
Lemma 4.1. Assume that (A1-A2) hold. The functional

$$
\begin{equation*}
\chi_{1}(t)=\rho_{z} \int_{0}^{1} z z_{t} d x-\frac{a_{2}}{a_{3}} \rho_{u} \int_{0}^{1} u_{t} z d x \tag{4.1}
\end{equation*}
$$

satisfies the for $p_{1}, q_{1} \geq 2$ and any $\varepsilon_{1}>0$

$$
\begin{align*}
\chi_{1}^{\prime}(t) & \leq-\frac{\alpha_{0}}{2 a_{3}} \int_{0}^{1} z_{x}^{2} d x+\frac{\bar{c}}{\varepsilon_{1}} \int_{0}^{1} z_{t}^{2} d x+\varepsilon_{1} \int_{0}^{1} u_{t}^{2} d x+c \gamma^{2} \int_{0}^{1}\left|z_{t}\right|^{p(x)} d x \\
& +c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(x)} d x \tag{4.2}
\end{align*}
$$

and for $1<p_{1}, q_{1}<2$, the functional satisfies

$$
\begin{align*}
\chi_{1}^{\prime}(t) & \leq-\frac{\alpha_{0}}{2 a_{3}} \int_{0}^{1} z_{x}^{2} d x+\frac{\bar{c}}{\varepsilon_{1}} \int_{0}^{1} z_{t}^{2} d x+\varepsilon_{1} \int_{0}^{1} u_{t}^{2} d x+c \gamma^{2} \int_{0}^{1}\left|z_{t}\right|^{p(x)} d x \\
& +c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(x)} d x+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}+c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1} \tag{4.3}
\end{align*}
$$

where $\alpha_{0}=a_{1} a_{3}-a_{2}^{2}>0$ and $\bar{c}>0$ depends on $a_{1}, a_{2}, a_{3}, \rho_{u}, \rho_{z}$.
Proof. By considering Eq (1.1) and integrating by parts, we obtain

$$
\chi_{1}^{\prime}(t)=\rho_{z} \int_{0}^{1} z_{t}^{2} d x-\left[a_{1}-\frac{a_{2}^{2}}{a_{3}}\right] \int_{0}^{1} z_{x}^{2} d x-\frac{a_{2}}{a_{3}} \rho_{u} \int_{0}^{1} u_{t} z_{t} d x
$$

$$
\begin{align*}
& +a_{2} \int_{0}^{1} z_{x} u_{x} d x-a_{2} \int_{0}^{1} z_{x} u_{x} d x-\gamma \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)-2} z_{t} z d x \\
& -\frac{a_{2}}{a_{3}} \beta \int_{0}^{1}\left|u_{t}\right|^{q(\cdot)-2} u_{t} z d x \tag{4.4}
\end{align*}
$$

Using Young's inequality, we get the for any $\varepsilon_{1}>0$

$$
\begin{equation*}
-\frac{a_{2}}{a_{3}} \rho_{u} \int_{0}^{1} u_{t} z_{t} d x \leq \varepsilon_{1} \int_{0}^{1} u_{t}^{2} d x+\frac{a_{2}^{2}}{4 \varepsilon_{1} a_{3}} \rho_{u}^{2} \int_{0}^{1} z_{t}^{2} d x . \tag{4.5}
\end{equation*}
$$

Applying Young's inequality with $\zeta(x)=\frac{p(x)}{p(x)-1}$ and $\zeta^{*}(x)=p(x)$ helps to estimate the last two terms in (4.4) as follows: For a.e $x \in \Omega$ and any $\delta_{1}>0$, we have

$$
\left|z_{t}\right|^{p(x)-2} z_{t} z \leq \delta_{1}|z|^{p(x)}+c_{\delta_{1}}(x)\left|z_{t}\right|^{p(x)}
$$

where

$$
c_{\delta_{1}}(x)=\delta_{1}^{1-p(x)}(p(x))^{-p(x)}(p(x)-1)^{p(x)-1}
$$

Hence,

$$
\begin{equation*}
-\int_{\Omega} z\left|z_{t}\right|^{p(x)-2} z_{t} d x \leq \delta_{1} \int_{\Omega}|z|^{p(x)} d x+\int_{\Omega} c_{\delta_{1}}(x)\left|z_{t}\right|^{p(x)} d x \tag{4.6}
\end{equation*}
$$

Next, using Eqs (2.2) and (2.3), Poincaré's inequality and the embedding property, we get

$$
\begin{align*}
\int_{\Omega}|z|^{p(x)} d x & =\int_{\Omega_{+}}|z|^{p(x)} d x+\int_{\Omega_{-}}|z|^{p(x)} d x \\
& \leq \int_{\Omega_{+}}|z|^{p_{2}} d x+\int_{\Omega_{-}}|z|^{p_{1}} d x \\
& \leq \int_{\Omega_{1}}|z|^{p_{2}} d x+\int_{\Omega^{2}}|z|^{p_{1}} d x \\
& \leq c_{e}^{p_{1}}\left\|z_{x}\right\|_{2}^{p_{1}}+c_{e}^{p_{2}}\left\|z_{x}\right\|_{2}^{p_{2}} \tag{4.7}\\
& \leq\left(c_{e}^{p_{1}}\left\|z_{x}\right\|_{2}^{p_{1}-2}+c_{e}^{p_{2}}\left\|z_{x}\right\|_{2}^{p_{2}-2}\right)\left\|z_{x}\right\|_{2}^{2} \\
& \leq\left(c_{e}^{p_{1}}\left(\frac{2}{a_{1}} E(0)\right)^{p_{1}-2}+c_{e}^{p_{2}}\left(\frac{2}{a_{1}} E(0)\right)^{p_{2}-2}\right)\left\|z_{x}\right\|_{2}^{2} \\
& \leq c_{1}\left\|z_{x}\right\|_{2}^{2}
\end{align*}
$$

where c_{e} is the embedding constant,

$$
\Omega_{+}=\{x \in \Omega:|z(x, t)| \geq 1\}, \Omega_{-}=\{x \in \Omega:|z(x, t)|<1\}
$$

and

$$
\begin{equation*}
c_{1}=\left(c_{e}^{p_{1}}\left(\frac{2}{a_{1}} E(0)\right)^{p_{1}-2}+c_{e}^{p_{2}}\left(\frac{2}{a_{1}} E(0)\right)^{p_{2}-2}\right) \tag{4.8}
\end{equation*}
$$

Then, Eqs (4.6) and (4.7) yield

$$
\begin{equation*}
-\gamma \int_{\Omega} z\left|z_{t}\right|^{p(x)-2} z_{t} d x \leq \delta_{1} c_{1}\left\|z_{x}\right\|_{2}^{2}+\gamma^{2} \int_{\Omega} c_{\delta_{1}}(x)\left|z_{t}\right|^{p(x)} d x \tag{4.9}
\end{equation*}
$$

Similarly, we can have

$$
\begin{equation*}
-\frac{a_{2}}{a_{3}} \beta \int_{\Omega} z\left|u_{t}\right|^{q(x)-2} u_{t} d x \leq \delta_{1} c_{1}\left\|z_{x}\right\|_{2}^{2}+\frac{a_{2}^{2} \beta^{2}}{a_{3}^{2}} \int_{\Omega} c_{\delta_{1}}(x)\left|u_{t}\right|^{q(x)} d x . \tag{4.10}
\end{equation*}
$$

By combining all estimates (4.4)-(4.10), and selecting $\delta_{1}=\frac{\alpha_{0}}{4 a_{3} c_{1}}$, it follows that $c_{\delta}(x)$ remains bounded; then, estimate (4.2) is established.

To prove Eq (4.3), we re-estimate the last two terms in Eq (4.4) as follows:
First, we set

$$
\Omega_{1}=\{x \in \Omega: p(x)<2\} \text { and } \Omega_{2}=\{x \in \Omega: p(x) \geq 2\} .
$$

Then, we have

$$
\begin{equation*}
-\int_{\Omega} z\left|z_{t}\right|^{p(x)-2} z_{t} d x=-\int_{\Omega_{1}} z\left|z_{t}\right|^{p(x)-2} z_{t} d x-\int_{\Omega_{2}} z\left|z_{t}\right|^{p(x)-2} z_{t} d x . \tag{4.11}
\end{equation*}
$$

We notice that on Ω_{1}, we have

$$
\begin{equation*}
2 p(x)-2<p(x), \text { and } 2 p(x)-2 \geq 2 p_{1}-2 . \tag{4.12}
\end{equation*}
$$

Therefore, by using Young's and Poincaré's inequalities, then (4.12) leads to

$$
\begin{align*}
& -\int_{\Omega_{1}} z\left|z_{t}\right|^{p(x)-2} z_{t} d x \leq\left.\eta \int_{\Omega_{1}}\left|z^{2} d x+\frac{1}{4 \eta} \int_{\Omega_{1}}\right| z_{t}\right|^{2 p(x)-2} d x \\
& \leq \eta\left\|z_{x}\right\|_{2}^{2}+c_{\eta}\left[\int_{\Omega_{1}^{+}}\left|z_{t}\right|^{2 p(x)-2} d x+\int_{\Omega_{1}^{-1}}\left|z_{t}\right|^{2 p(x)-2} d x\right] \\
& \leq \eta\left\|z_{x}\right\|_{2}^{2}+c_{\eta}\left[\int_{\Omega_{1}^{+}}\left|z_{t}\right|^{p(x)} d x+\int_{\Omega_{1}^{-}}\left|z_{t}\right|^{2 p_{1}-2} d x\right] \\
& \leq \eta\left\|z_{x}\right\|_{2}^{2}+c_{\eta}\left[\int_{\Omega_{2}} \mid z_{t}^{p(x)} d x+\left(\int_{\Omega_{1}^{-}}\left|z_{t}\right|^{2} d x\right)^{p_{1}-1}\right] \tag{4.13}\\
& \leq \eta\left\|z_{x}\right\|_{2}^{2}+c_{\eta}\left[\int_{\Omega_{1}}\left|z_{t}\right|^{p(x)} d x+\left(\int_{\Omega_{1}^{-}}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}^{-1}}\right] \\
& \leq \eta\left\|z_{x}\right\|_{2}^{2}+c_{\eta}\left[\int_{\Omega^{1}}\left|z_{t}\right|^{p(x)} d x+\left(\int_{\Omega_{t}} \mid z_{t}^{p(x)} d x\right)^{p_{1}-1}\right],
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{1}^{+}=\left\{x \in \Omega_{1}:\left|z_{t}(x, t)\right| \geq 1\right\} \text { and } \Omega_{1}^{-}=\left\{x \in \Omega_{1}:\left|z_{t}(x, t)\right|<1\right\} . \tag{4.14}
\end{equation*}
$$

Next, we have the following for the case $p(x) \geq 2$

$$
\begin{equation*}
-\int_{\Omega_{2}} z\left|z_{t}\right|^{p(x)} z_{t} d x \leq \eta\left\|z_{x}\right\|_{2}^{2}+\int_{\Omega^{\prime}} c_{\eta}(x)\left|z_{t}\right|^{p(x)} d x . \tag{4.15}
\end{equation*}
$$

Therefore, we conclude that

$$
\begin{equation*}
-\gamma \int_{\Omega} z\left|z_{t}\right|^{p(x)} z_{t} d x \leq 2 \eta\left\|z_{x}\right\|_{2}^{2}+\gamma^{2} c_{\eta}\left[\int_{\Omega}\left|z_{t}\right|^{p(x)} d x+\left(\int_{\Omega}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}\right] \tag{4.16}
\end{equation*}
$$

Similarly, we can get

$$
\begin{equation*}
-\frac{a_{2} \beta}{a_{3}} \int_{\Omega} z\left|u_{t}\right|^{q(x)-2} u_{t} d x \leq 2 \eta\left\|z_{x}\right\|_{2}^{2}+\beta^{2} c_{\eta}\left[\int_{\Omega}\left|u_{t}\right|^{q(x)} d x+\left(\int_{\Omega}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}\right] . \tag{4.17}
\end{equation*}
$$

Selecting $\eta=\frac{\alpha}{8 a_{3}}$, that $c_{\delta}(x)$ remains bounded; and, then, combining Eqs (4.11)-(4.17), estimate (4.3) is established.

Lemma 4.2. Assume that (A1-A2) hold. The functional

$$
\begin{equation*}
\chi_{2}(t)=-\rho_{z} \int_{0}^{1} z_{t} z d x \tag{4.18}
\end{equation*}
$$

satisfies the for $p_{1} \geq 2$ and any $\varepsilon_{2}, \delta_{2}>0$:

$$
\begin{align*}
\chi_{2}^{\prime}(t) & \leq-\rho_{z} \int_{0}^{1} z_{t}^{2} d x+\left[a_{1}+\frac{a_{2}^{2}}{4 \varepsilon_{2}}+c_{1} \delta_{2}\right] \int_{0}^{1} z_{x}^{2} d x+\varepsilon_{2} \int_{0}^{1} u_{x}^{2} d x \\
& +\gamma^{2} \int_{\Omega} c_{\delta_{2}}(x)\left|z_{t}\right|^{p(x)} d x, \tag{4.19}
\end{align*}
$$

and for $1<p_{1}<2$, the functional satisfies

$$
\begin{align*}
\chi_{2}^{\prime}(t) & \leq-\rho_{z} \int_{0}^{1} z_{t}^{2} d x+\left[a_{1}+\frac{a_{2}^{2}}{4 \varepsilon_{2}}+c_{1} \delta_{2}\right] \int_{0}^{1} z_{x}^{2} d x+\varepsilon_{2} \int_{0}^{1} u_{x}^{2} d x \\
& +\gamma^{2} \int_{\Omega} c_{\delta_{2}}(x)\left|z_{t}\right|^{p(x)} d x+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1} \tag{4.20}
\end{align*}
$$

where c_{1} is defined in $E q$ (4.8).
Proof. Direct computations using Eq (1.1) give

$$
\begin{equation*}
\chi_{2}^{\prime}(t)=-\rho_{z} \int_{0}^{1} z_{t}^{2} d x+a_{1} \int_{0}^{1} z_{x}^{2} d x+a_{2} \int_{0}^{1} z_{x} u_{x} d x-\gamma \int_{\Omega} z\left|z_{t}\right|^{p(x)-2} z_{t} d x \tag{4.21}
\end{equation*}
$$

Hence, Young's inequality and the same estimates for the last term in Eq (4.21) yield Eqs (4.19) and (4.20).

Lemma 4.3. Assume that (A1-A2) hold. The functional

$$
\begin{equation*}
\chi_{3}(t)=a_{2} \rho_{z} \rho_{u} \int_{0}^{1} u z_{t} d x-a_{2} \rho_{u} \rho_{z} \int_{0}^{1} z u_{t} d x \tag{4.22}
\end{equation*}
$$

satisfies the for $p_{1}, q_{1} \geq 2$ and any $\eta_{1}>0$:

$$
\begin{equation*}
\chi_{3}^{\prime}(t) \leq-\frac{a_{2}^{2} \rho_{u}}{4} \int_{0}^{1} u_{x}^{2} d x+c \gamma^{2} \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)} d x+\bar{c} \int_{0}^{1} z_{x}^{2} d x+c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(\cdot)} d x \tag{4.23}
\end{equation*}
$$

and for $1<p_{1}, q_{1}<2$, the functional satisfies

$$
\begin{align*}
\chi_{3}^{\prime}(t) & \leq-\frac{a_{2}^{2} \rho_{u}}{4} \int_{0}^{1} u_{x}^{2} d x+c \gamma^{2} \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)} d x+\bar{c} \int_{0}^{1} z_{x}^{2} d x+c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(\cdot)} d x \\
& +c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1} \tag{4.24}
\end{align*}
$$

where $\bar{c}>0$ depends on $a_{1}, a_{2}, a_{3}, \rho_{u}, \rho_{z}$.
Proof. By exploiting (1.1), we have

$$
\begin{align*}
\chi_{3}^{\prime}(t) & =a_{2} \rho_{z} \rho_{u} \int_{0}^{1} u_{t} z_{t} d x-a_{2} \rho_{u} \rho_{z} \int_{0}^{1} u_{t} z_{t} d x-a_{2} a_{1} \rho_{u} \int_{0}^{1} u_{x} z_{x} d x-a_{2}^{2} \rho_{u} \int_{0}^{1} u_{x}^{2} d x \\
& +a_{2} a_{3} \rho_{z} \int_{0}^{1} z_{x} u_{x} d x+a_{2}^{2} \rho_{z} \int_{0}^{1} z_{x}^{2} d x-a_{2} \gamma \rho_{u} \int_{0}^{1}\left|z_{t}\right|^{p(x)-2} z_{t} u d x \\
& +a_{2} \beta \rho_{z} \int_{0}^{1}\left|u_{t}\right|^{q(x)-2} u_{t} z d x . \tag{4.25}
\end{align*}
$$

Using Young's inequality, we get

$$
\begin{equation*}
a_{2}\left(a_{3} \rho_{z}-a_{1} \rho_{u}\right) \int_{0}^{1} u_{x} z_{x} d x \leq \frac{a_{2}^{2} \rho_{u}}{2} \int_{0}^{1} u_{x}^{2} d x+\bar{c} \int_{0}^{1} z_{x}^{2} d x, \tag{4.26}
\end{equation*}
$$

where $\bar{c}>0$ depends on $a_{1}, a_{2}, a_{3}, \rho_{u}, \rho_{z}$. To estimate the last two terms in (4.25), we apply Young's inequality with $\zeta(x)=\frac{p(x)}{p(x)-1}$ and $\zeta^{*}(x)=p(x)$. So, for a.e $x \in \Omega$ and any $\delta_{3}>0$, we have

$$
\left|z_{t}\right|^{p(x)-2} z_{t} u \leq \delta_{3}|u|^{p(x)}+c_{\delta_{3}}(x)\left|z_{t}\right|^{p(x)},
$$

where

$$
c_{\delta_{3}}(x)=\delta_{3}^{1-p(x)}(p(x))^{-p(x)}(p(x)-1)^{p(x)-1} .
$$

Hence,

$$
\begin{equation*}
\rho_{u} a_{2} \int_{\Omega} u\left|z_{t}\right|^{p(x)-2} z_{t} d x \leq \delta_{3} \int_{\Omega}|u|^{p(x)} d x+a_{2}^{2} \rho_{u}^{2} \int_{\Omega} c_{\delta_{3}}(x)\left|z_{t}\right|^{p(x)} d x . \tag{4.27}
\end{equation*}
$$

Using Eqs (2.2) and (2.3), Poincare's inequality and the embedding property, we find that

$$
\begin{align*}
\int_{\Omega}|u|^{p(x)} d x & =\int_{\Omega_{+}}|u|^{p(x)} d x+\int_{\Omega_{-}}|u|^{p(x)} d x \\
& \leq \int_{\Omega_{+}}|u|^{p_{2}} d x+\int_{\Omega_{-}}|u|^{p_{1}} d x \\
& \leq \int_{\Omega^{-}}|u|^{p_{2}} d x+\int_{\Omega^{-}}|u|^{p_{1}} d x \\
& \leq c_{e}^{p_{1}}\left\|u_{x}\right\|_{2}^{p_{1}}+c_{e}^{p_{2}}\left\|u_{x}\right\|_{2}^{p_{2}} \tag{4.28}\\
& \leq\left(c_{e}^{p_{1}}\left\|u_{x}\right\|_{2}^{p_{1}-2}+c_{e}^{p_{2}}\left\|u_{x}\right\|_{2}^{p_{2}-2}\right)\left\|u_{x}\right\|_{2}^{2} \\
& \leq\left(c_{e}^{p_{1}}\left(\frac{2}{a_{3}} E(0)\right)^{p_{1}-2}+c_{e}^{p_{2}}\left(\frac{2}{a_{3}} E(0)\right)^{p_{2}-2}\right)\left\|u_{x}\right\|_{2}^{2} \\
& \leq c_{3}\left\|u_{x}\right\|_{2}^{2},
\end{align*}
$$

where c_{e} is the embedding constant,

$$
\Omega_{+}=\{x \in \Omega:|u(x, t)| \geq 1\}, \Omega_{-}=\{x \in \Omega:|u(x, t)|<1\}
$$

and

$$
\begin{equation*}
c_{3}=\left(c_{e}^{p_{1}}\left(\frac{2}{a_{3}} E(0)\right)^{p_{1}-2}+c_{e}^{p_{2}}\left(\frac{2}{a_{3}} E(0)\right)^{p_{2}-2}\right) . \tag{4.29}
\end{equation*}
$$

Then, Eqs (4.27) and (4.28) yield

$$
\begin{equation*}
a_{2} \rho_{u} \gamma \int_{\Omega} u\left|z_{t}\right|^{p(x)-2} z_{t} d x \leq \delta_{3} c_{3}\left\|u_{x}\right\|_{2}^{2}+\gamma^{2} \int_{\Omega} c_{\delta_{3}}(x)\left|z_{t}\right|^{p(x)} d x \tag{4.30}
\end{equation*}
$$

In the same way, we get

$$
\begin{equation*}
a_{2} \rho_{z} \beta \int_{\Omega} z\left|u_{t}\right|^{q(x)-2} u_{t} d x \leq \omega_{3} c_{1}\left\|z_{x}\right\|_{2}^{2}+\beta^{2} \int_{\Omega} c_{\omega_{3}}(x)\left|u_{t}\right|^{q(x)} d x, \tag{4.31}
\end{equation*}
$$

where c_{1}, c_{3} have been defined in Eqs (4.8) and (4.29).
Combining all of the above estimates and selecting $\delta_{3}=\frac{a_{2}^{2} \rho_{u}}{4 c_{3}}$ and $\omega_{3}=\frac{1}{c_{1}}$ we arrive at Eq (4.23).
To prove Eq (4.24), we re-estimate the last two terms in Eq (4.25) as in the above calculations to obtain

$$
\begin{equation*}
-a_{2} \rho_{u} \gamma \int_{\Omega} u\left|z_{t}\right|^{p(x)} z_{t} d x \leq 2 \eta c_{3}\left\|u_{x}\right\|_{2}^{2}+\gamma^{2} \int_{\Omega} c_{\eta}(x)\left|z_{t}\right|^{p(x)} d x+\gamma^{2} c_{\eta}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}, \tag{4.32}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2} \rho_{7} \beta \int_{\Omega} z\left|u_{t}\right|^{q(x)} u_{t} d x \leq 2 \lambda c_{1}\left\|z_{x}\right\|_{2}^{2}+\beta^{2} \int_{\Omega} c_{\lambda}(x)\left|u_{t}\right|^{q(x)} d x+\beta^{2} c_{\lambda}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1} \tag{4.33}
\end{equation*}
$$

Then, by selecting $\eta=\frac{a_{2}^{2} \rho_{u}}{8 c_{3}}$ and $\lambda=\frac{1}{2 c_{1}}$, estimate (4.24) is established.
Lemma 4.4. Assume that (A1-A2) hold. The functional

$$
\begin{equation*}
\chi_{4}(t)=-\rho_{u} \varepsilon \int_{0}^{1} u_{t} u d x \tag{4.34}
\end{equation*}
$$

satisfies the for some $\varepsilon>0$, and $q_{1} \geq 2$

$$
\begin{equation*}
\chi_{4}^{\prime}(t) \leq-\varepsilon \rho_{u} \int_{0}^{1} u_{t}^{2} d x+\frac{3 \varepsilon a_{3}}{2} \int_{0}^{1} u_{x}^{2} d x+\frac{\varepsilon a_{2}^{2}}{a_{3}} \int_{0}^{1} z_{x}^{2} d x+c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(x)} d x, \tag{4.35}
\end{equation*}
$$

and for $1<q_{1}<2$,

$$
\begin{align*}
\chi_{4}^{\prime}(t) & \leq-\varepsilon \rho_{u} \int_{0}^{1} u_{t}^{2} d x+\frac{3 \varepsilon a_{3}}{2} \int_{0}^{1} u_{x}^{2} d x+\frac{\varepsilon a_{2}^{2}}{a_{3}} \int_{0}^{1} z_{x}^{2} d x+c \beta^{2} \int_{0}^{1}\left|u_{t}\right|^{q(x)} d x \\
& +c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1} d x . \tag{4.36}
\end{align*}
$$

Proof. Direct computations using Eq (1.1) yield

$$
\begin{equation*}
\chi_{4}^{\prime}(t)=-\rho_{u} \varepsilon \int_{0}^{1} u_{t}^{2} d x+\varepsilon a_{3} \int_{0}^{1} u_{x}^{2} d x+\varepsilon a_{2} \int_{0}^{1} u_{x} z_{x} d x-\varepsilon \beta \int_{0}^{1} u\left|u_{t}\right|^{q(x)} u_{t} d x \tag{4.37}
\end{equation*}
$$

Estimates (4.35) and (4.36) can be established in a similar manner as for the above estimations.

Lemma 4.5. Assume that (A1-A2) hold. If $p_{1}, q_{1} \geq 2$, then

$$
\begin{align*}
& \int_{0}^{1} z_{t}^{2} d x \leq-E^{\prime}(t), \text { if } p_{2}=2 \\
& \int_{0}^{1} u_{t}^{2} d x \leq-E^{\prime}(t), \text { if } q_{2}=2 \tag{4.38}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{1} z_{t}^{2} d x \leq-E^{\prime}(t)+c\left(-E^{\prime}(t)\right)^{\frac{2}{p_{2}}}, \text { if } p_{2}>2 \\
& \int_{0}^{1} u_{t}^{2} d x \leq-E^{\prime}(t)+c\left(-E^{\prime}(t)\right)^{\frac{2}{q_{2}}}, \text { if } q_{2}>2 \tag{4.39}
\end{align*}
$$

Proof. By recalling Eq (2.3), it is easy to establish Eq (4.38). To prove the first estimate in Eq (4.39), we set the following partitions

$$
\begin{equation*}
\Omega_{1}=\left\{x \in \Omega:\left|z_{t}\right| \geq 1\right\} \quad \text { and } \quad \Omega_{2}=\left\{x \in \Omega:\left|z_{t}\right|<1\right\} . \tag{4.40}
\end{equation*}
$$

Using the Hölder and Young inequalities and Eq (2.2), we obtain the following for Ω_{1},

$$
\begin{equation*}
\int_{\Omega_{1}} z_{t}^{2} d x \leq \int_{\Omega}\left|z_{t}\right|^{p(x)} d x=-E^{\prime}(t) \tag{4.41}
\end{equation*}
$$

and for Ω_{2}, we get

$$
\begin{align*}
\int_{\Omega_{2}} z_{t}^{2} \mathrm{~d} x & \leq c\left(\int_{\Omega_{2}}\left|z_{t}\right|^{p_{2}} \mathrm{~d} x\right)^{\frac{2}{p_{2}}} \\
& \leq c\left(\int_{\Omega_{2}}\left|z_{t}\right|^{p(x)} \mathrm{d} x\right)^{\frac{2}{p_{2}}} \leq c\left(\int_{\Omega_{2}}\left|z_{t}\right|^{p(x)} \mathrm{d} x\right)^{\frac{2}{p_{2}}}=c\left(-E^{\prime}(t)\right)^{\frac{2}{p_{2}}} . \tag{4.42}
\end{align*}
$$

Combining Eqs (4.41) and (4.42), the first estimate in Eq (4.39) can be established ; also, repeat the same steps to establish the second estimate in Eq (4.39).

5. Proofs of the main results

In this section, we prove our decay results in Theorems 3.1, 3.2 and 3.3.

5.1. Proof of Theorem 3.1

Proof. To prove Theorem 3.1, let

$$
\begin{equation*}
\mathcal{L}(t)=\mu E(t)+\mu_{1} \chi_{1}(t)+\mu_{2} \chi_{2}(t)+\mu_{3} \chi_{3}(t)+\mu_{4} \chi_{4}(t) \tag{5.1}
\end{equation*}
$$

where $\mu, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are positive constants to be properly chosen. By taking the derivative of the functional \mathcal{L} and using all of the above estimates (4.2)-(4.35), we obtain

$$
\begin{aligned}
\mathcal{L}^{\prime}(t) & \leq-\left(\mu_{3} \frac{\alpha}{2}-\mu_{2} \varepsilon_{2}-\frac{3 \varepsilon a_{3} \mu_{4}}{2}\right) \int_{0}^{1} u_{x}^{2} d x \\
& -\left(\mu_{1} \frac{\alpha}{2 a_{3}}-\mu_{2} \frac{\bar{c}}{\varepsilon_{2}}-c_{1} \delta_{2} \mu_{2}-\bar{c} \mu_{3}-\frac{\varepsilon a_{2}^{2} \mu_{4}}{a_{3}}\right) \int_{0}^{1} z_{x}^{2} d x \\
& -\left(\rho_{z} \mu_{2}-\mu_{1} \frac{\bar{c}}{\varepsilon_{1}}\right) \int_{0}^{1} z_{t}^{2} d x-\left(\varepsilon \mu_{4} \rho_{u}-\varepsilon_{1} \mu_{1}\right) \int_{0}^{1} u_{t}^{2} d x \\
& -\left[\gamma \mu-c \gamma^{2} \mu_{1}-c \gamma^{2} \mu_{2}-c \gamma^{2} \mu_{3}\right] \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)} d x+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1} \\
& -\left[\beta \mu-c \beta^{2} \mu_{1}-c \beta^{2} \mu_{3}-c \beta^{2} \mu_{4}\right] \int_{0}^{1}\left|u_{t}\right|^{q(\cdot)} d x+c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}
\end{aligned}
$$

Choosing $\varepsilon_{i}=\mu_{i}, i=1,2$, and $\delta_{2}=\frac{1}{\mu_{2}}$, the above estimate becomes

$$
\begin{aligned}
\mathcal{L}^{\prime}(t) & \leq-\left(\mu_{3} \frac{\alpha}{2}-\mu_{2}^{2}-\frac{3 \varepsilon a_{3} \mu_{4}}{2}\right) \int_{0}^{1} u_{x}^{2} d x \\
& -\left(\mu_{1} \frac{\alpha}{2 a_{3}}-\bar{c}-c_{1}-\bar{c} \mu_{3}-\frac{\varepsilon a_{2}^{2} \mu_{4}}{a_{3}}\right) \int_{0}^{1} z_{x}^{2} d x \\
& -\left(\rho_{z} \mu_{2}-\bar{c}\right) \int_{0}^{1} z_{t}^{2} d x-\left(\varepsilon \mu_{4} \rho_{u}-\mu_{1}^{2}\right) \int_{0}^{1} u_{t}^{2} d x \\
& -\left[\gamma \mu-c \gamma^{2} \mu_{1}-c \gamma^{2} \mu_{2}-c \gamma^{2} \mu_{3}\right] \int_{0}^{1}\left|z_{t}\right|^{p \cdot()} d x+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1} \\
& -\left[\beta \mu-c \beta^{2} \mu_{1}-c \beta^{2} \mu_{2}-c \beta^{2} \mu_{4}\right] \int_{0}^{1}\left|u_{t}\right|^{q(\cdot)} d x+c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1} .
\end{aligned}
$$

First, we select μ_{2} such that

$$
\rho_{z} \mu_{2}-\bar{c}>1
$$

Then, we choose μ_{3} large enough such that

$$
\Lambda_{1}:=\mu_{3} \frac{\alpha}{2}-\mu_{2}^{2}>0 .
$$

Next, we choose μ_{1} large enough such that

$$
\Lambda_{2}:=\mu_{1} \frac{\alpha}{2 a_{3}}-\bar{c}-c_{1}-\bar{c} \mu_{3}>0 .
$$

Now, we choose μ_{4} such that

$$
\varepsilon \mu_{4} \rho_{u}-\mu_{1}^{2}>1
$$

Select ε such that

$$
\varepsilon=\min \left[\frac{2 \Lambda_{1}}{3 a_{3} \mu_{4}}, \frac{a_{3} \Lambda_{2}}{3 a_{2}^{2} \mu_{4}}\right]
$$

After fixing μ_{i}, where $i=1,2,3,4$, we select μ large enough such that

$$
\gamma \mu-c \gamma^{2} \mu_{1}-c \gamma^{2} \mu_{2}-c \gamma^{2} \mu_{3}>1
$$

$$
\beta \mu-c \beta^{2} \mu_{1}-c \beta^{2} \mu_{2}-c \beta^{2} \mu_{4}>1,
$$

and $\mathcal{L} \sim E$. That is, we can find two positive constants α_{1} and α_{2} such that

$$
\begin{equation*}
\alpha_{1} E(t) \leq \mathcal{L}(t) \leq \alpha_{2} E(t), \tag{5.2}
\end{equation*}
$$

On the other hand, Young's inequality and (2.2) allow us to obtain

$$
\begin{equation*}
E(t) \leq \bar{c} \int_{0}^{1}\left(u_{t}^{2}+u_{x}^{2}+z_{t}^{2}+z_{x}^{2}\right) d x . \tag{5.3}
\end{equation*}
$$

Hence, estimate (5.2) becomes as follows for any $t \geq 0$ and some positive constant α_{3},

$$
\begin{align*}
\mathcal{L}^{\prime}(t) & \leq-\alpha_{3} \int_{0}^{1}\left(u_{t}^{2}+u_{x}^{2}+z_{t}^{2}+z_{x}^{2}\right) d x+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1} \tag{5.4}\\
& +c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}
\end{align*}
$$

Then, from Eqs (5.3) and (5.4), we get the following for some positive constant α_{4},

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-\alpha_{4} E(t)+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}+c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}, t \geq 0 \tag{5.5}
\end{equation*}
$$

Thanks to Eq (5.2), we get the following for any $t \geq 0$ and some positive constant α_{5},

$$
\mathcal{L}^{\prime}(t) \leq-\alpha_{5} \mathcal{L}(t)+c \gamma^{2}\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}+c \beta^{2}\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}
$$

Recalling Eq (2.3) and multiplying the above equation by $E^{\alpha}(t)$, where $\alpha>0$, we obtain

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+c \gamma^{2} E^{\alpha}(t)\left(-E^{\prime}(t)\right)^{p_{1}-1}+c \beta^{2} E^{\alpha}(t)\left(-E^{\prime}(t)\right)^{q_{1}-1} \tag{5.6}
\end{equation*}
$$

- If $\gamma=0$ and $\beta \neq 0$, then we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+c \beta^{2} E^{\alpha}(t)\left(-E^{\prime}(t)\right)^{q_{1}-1} . \tag{5.7}
\end{equation*}
$$

Using Young's inequality with $\zeta=\frac{1}{q_{1}-1}$ and $\zeta^{*}=\frac{1}{2-q_{1}}$, for any $\varepsilon>0$, we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-q_{1}}}(t)+c_{\varepsilon}\left(-E^{\prime}(t)\right) \tag{5.8}
\end{equation*}
$$

Taking $\alpha=\frac{2-q_{1}}{q_{1}-1}>0$, we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5}(1-\varepsilon) E^{\alpha+1}(t)+c_{\varepsilon}\left(-E^{\prime}(t)\right) \tag{5.9}
\end{equation*}
$$

By taking ε small enough Eq (5.9) becomes:

$$
\begin{equation*}
\mathcal{L}_{1}^{\prime}(t) \leq-\alpha_{6} E^{\alpha+1}(t), \quad \forall t \geq 0 \tag{5.10}
\end{equation*}
$$

where $\mathcal{L}_{1}=E^{\alpha} \mathcal{L}+c E \sim E$. Integrating (5.10) over ($0, t$), we obtain

$$
\begin{equation*}
E(t)<\frac{c_{q_{1}}}{(t+1)^{\frac{1}{\alpha}}}, \forall t>0 \tag{5.11}
\end{equation*}
$$

where $\alpha=\frac{2-q_{1}}{q_{1}-1}$. Then the first estimate in $\mathrm{Eq}(3.1)$ is proved.

- If $\gamma \neq 0$ and $\beta=0$, then we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+c \gamma^{2} E^{\alpha}(t)\left(-E^{\prime}(t)\right)^{p_{1}-1} . \tag{5.12}
\end{equation*}
$$

The proof of the second estimate in (3.1) is straightforward. obtained in a similar manner as for the above one.

- If $\gamma \neq 0$ and $\beta \neq 0$, then we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}}+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-q_{1}}}+c_{\varepsilon}\left(-E^{\prime}(t)\right) . \tag{5.13}
\end{equation*}
$$

Now, we discuss two cases:
Case 1: If $p_{1}>q_{1}$, then

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}}+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}} E^{\frac{\alpha\left(q_{1}-p_{1}\right)}{\left(2-p_{1}\left(2-q_{1}\right)\right.}}+c_{\varepsilon}\left(-E^{\prime}(t)\right) . \tag{5.14}
\end{equation*}
$$

Since E is non-increasing, then we get

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}}+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}} E(0)^{\frac{\alpha\left(q_{1}-p_{1}\right)}{\left(2-p_{1}\right)\left(2-q_{1}\right)}}+c_{\varepsilon}\left(-E^{\prime}(t)\right) . \tag{5.15}
\end{equation*}
$$

Then, Eq (5.15) becomes

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1}(t)+\alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}}+c \alpha_{5} \varepsilon E^{\frac{\alpha}{2-p_{1}}}+2 c_{\varepsilon}\left(-E^{\prime}(t)\right) \tag{5.16}
\end{equation*}
$$

From Eq (5.16), we have

$$
\begin{equation*}
E^{\alpha}(t) \mathcal{L}^{\prime}(t) \leq-\alpha_{5}(1-\varepsilon-c \varepsilon) E^{\alpha+1}(t)+c_{\varepsilon}\left(-E^{\prime}(t)\right) \tag{5.17}
\end{equation*}
$$

By taking ε small enough Eq (5.17) becomes:

$$
\begin{equation*}
\mathcal{L}_{1}^{\prime}(t) \leq-\alpha_{6} E^{\alpha+1}(t), \quad \forall t \geq 0 \tag{5.18}
\end{equation*}
$$

where $\mathcal{L}_{1}=E^{\alpha} \mathcal{L}+c E \sim E$. Integrating (5.25) over ($0, t$), we get

$$
\begin{equation*}
E(t)<\frac{c_{p_{1}}}{(t+1)^{\frac{1}{\alpha}}}, \forall t>0 \tag{5.19}
\end{equation*}
$$

where $\alpha=\frac{2-p_{1}}{p_{1}-1}$.
Case 2: If $q_{1}<p_{1}$, we will get

$$
\begin{equation*}
E(t)<\frac{c_{q_{1}}}{(t+1)^{\frac{1}{\alpha}}}, \forall t>0, \tag{5.20}
\end{equation*}
$$

where $\alpha=\frac{2-q_{1}}{q_{1}-1}>0$. So, by taking $\bar{p}_{1}=\min \left\{p_{1}, q_{1}\right\}$, the proof of the last estimate in $\operatorname{Eq}(3.1)$ is completed.

5.2. Proof of Theorem 3.2

Proof. To prove Theorem 3.2, we reformulate the integrals $\int_{0}^{1} z_{t}^{2} d x$ and $\int_{0}^{1} u_{t}^{2} d x$ in Eq (5.2) and recall that the integrals $\left(\int_{0}^{1}\left|z_{t}\right|^{p(x)} d x\right)^{p_{1}-1}$ and $\left(\int_{0}^{1}\left|u_{t}\right|^{q(x)} d x\right)^{q_{1}-1}$ are not relevant in this situation; thus, we have

$$
\begin{align*}
\mathcal{L}^{\prime}(t) & \leq-\left(\mu_{3} \frac{\alpha}{2}-\mu_{2}^{2}-\frac{3 \varepsilon a_{3} \mu_{4}}{2}\right) \int_{0}^{1} u_{x}^{2} d x \\
& -\left(\mu_{1} \frac{\alpha}{2 a_{3}}-\bar{c}-c_{1}-\bar{c} \mu_{3}-\frac{\varepsilon a_{2}^{2} \mu_{4}}{a_{3}}\right) \int_{0}^{1} z_{x}^{2} d x \\
& -\rho_{z} \mu_{2} \int_{0}^{1} z_{t}^{2} d x-\varepsilon \mu_{4} \rho_{u} \int_{0}^{1} u_{t}^{2} d x+\bar{c} \int_{0}^{1} z_{t}^{2} d x+\mu_{1}^{2} \int_{0}^{1} u_{t}^{2} d x \tag{5.21}\\
& -\left[\gamma \mu-c \gamma^{2} \mu_{1}-c \gamma^{2} \mu_{2}-c \gamma^{2} \mu_{3}\right] \int_{0}^{1}\left|z_{t}\right|^{p(\cdot)} d x \\
& -\left[\beta \mu-c \beta^{2} \mu_{1}-c \beta^{2} \mu_{3}-c \beta^{2} \mu_{4}\right] \int_{0}^{1}\left|u_{t}\right|^{q \cdot()} d x .
\end{align*}
$$

We shall prove the case that $\gamma, \beta \neq 0$ and the other cases will be straightforward by letting either $\gamma=0$ or $\beta=0$. Let us select $\mu_{2}=1$ and $\varepsilon \mu_{4}=1$. Then it is easy to select μ_{3} and then μ_{1}; finally, we can select μ large enough such that estimate (5.21) becomes

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-\beta_{1} \int_{0}^{1}\left(u_{t}^{2}+u_{x}^{2}+z_{t}^{2}+z_{x}^{2}\right) d x+\bar{c} \int_{0}^{1} z_{t}^{2} d x+\bar{c} \int_{0}^{1} u_{t}^{2} d x, \quad \forall t \geq 0 \tag{5.22}
\end{equation*}
$$

and for two positive constants β_{2} and β_{3},

$$
\begin{equation*}
\beta_{2} E(t) \leq \mathcal{L}(t) \leq \beta_{3} E(t), \tag{5.23}
\end{equation*}
$$

By recalling Poincaré's inequality and the energy functional defined in Eq (2.2), estimate Eq (5.22) becomes, for a positive constant β_{4},

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-\beta_{4} E(t)+\bar{c} \int_{0}^{1} z_{t}^{2} d x+\bar{c} \int_{0}^{1} u_{t}^{2} d x, \quad \forall t \geq 0 \tag{5.24}
\end{equation*}
$$

and thanks to Eq (5.23), we get the following for any $t \geq 0$

$$
\mathcal{L}^{\prime}(t) \leq-\beta_{5} \mathcal{L}(t)+\bar{c} \int_{0}^{1} z_{t}^{2} d x+\bar{c} \int_{0}^{1} u_{t}^{2} d x
$$

Here, we will discuss two cases:

Case I: If $p_{2}=q_{2}=2$, then by using Lemma 4.5, we have

$$
\mathcal{L}^{\prime}(t) \leq-\beta_{5} \mathcal{L}(t)+c\left(-E^{\prime}(t)\right) .
$$

This gives

$$
\mathcal{L}_{1}^{\prime}(t) \leq-\beta_{5} \mathcal{L}(t) .
$$

where $\mathcal{L}_{1}=(\mathcal{L}+c E) \sim E$. Integrating the last estimate over the interval $(0, t)$ and using the equivalence properties $\mathcal{L}_{1}, \mathcal{L} \sim E$, the proof of the last estimate in (3.4) is completed.

Case II: If $p_{2}, q_{2}>2$, then by using Lemma 4.5 , we have

$$
\mathcal{L}^{\prime}(t) \leq-\beta_{5} \mathcal{L}(t)+\left(-E^{\prime}(t)\right)^{\frac{2}{p_{2}}}+\left(-E^{\prime}(t)\right)^{\frac{2}{y_{2}}} .
$$

Multiplying the last equation by E^{α} where $\alpha=\frac{p_{2}-2}{2}>0$, we obtain

$$
E^{q} \mathcal{L}^{\prime}(t) \leq-\beta_{5} E^{\alpha} \mathcal{L}(t)+E^{\alpha}\left(-E^{\prime}(t)\right)^{\frac{2}{p_{2}}}+E^{\alpha}\left(-E^{\prime}(t)\right)^{\frac{2}{2_{2}}}
$$

Applying Young's inequality twice, we obtain the following for $\varepsilon>0$

$$
E^{\alpha} \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1} \mathcal{L}(t)+\varepsilon E^{\frac{\alpha p_{2}}{p_{2}-2}}+\varepsilon E^{\frac{\alpha q_{2}}{q_{2}-2}}+C_{\varepsilon}\left(-E^{\prime}(t)\right) .
$$

We will discuss two cases:
Case A: If $p_{2}<q_{2}$, we will have

$$
E^{\alpha} \mathcal{L}^{\prime}(t) \leq-\alpha_{5} E^{\alpha+1} \mathcal{L}(t)+\varepsilon E^{\frac{\alpha p_{2}}{p_{2}-2}}+\varepsilon E^{\frac{\alpha p_{2}}{p_{2}-2}} E^{\frac{2 \alpha\left(p_{2}-q_{2}\right)}{\left.p_{2}-2\right)\left(q_{2}-2\right)}}+C_{\varepsilon}\left(-E^{\prime}(t)\right) .
$$

Using the non-increasing property of E, we get

$$
E^{\alpha} \mathcal{L}^{\prime}(t) \leq-\left(\alpha_{5}-\varepsilon-c \varepsilon\right) E^{\alpha+1} \mathcal{L}(t)+C_{\varepsilon}\left(-E^{\prime}(t)\right)
$$

Taking ε small enough, the above estimate becomes:

$$
\begin{equation*}
\mathcal{L}_{2}(t) \leq-\beta_{6} E^{\alpha+1}(t), \quad \forall t \geq 0 \tag{5.25}
\end{equation*}
$$

where $\mathcal{L}_{2}=E^{\alpha} \mathcal{L}+c E \sim E$.
Integration over ($0, t$), using $E \sim \mathcal{L}_{2}$ gives

$$
\begin{equation*}
E(t)<\frac{c_{p_{2}}}{(t+1)^{1 / \alpha}}, \forall t>0, \tag{5.26}
\end{equation*}
$$

where $\alpha=\frac{p_{2}-2}{2}$.
Case B: If $q_{2}<p_{2}$, we will get

$$
\begin{equation*}
E(t)<\frac{c_{q_{2}}}{(t+1)^{1 / \alpha}}, \forall t>0, \tag{5.27}
\end{equation*}
$$

where $\alpha=\frac{q_{2}-2}{2}$. So, by taking $\bar{p}_{2}=\min \left\{p_{2}, q_{2}\right\}$, the proof of the last estimate in $\mathrm{Eq}(3.3)$ is completed.

5.3. Proof of Theorem 3.3

The proof of this theorem can be obtained by repeating proofs similar to those in Theorem 3.1 and Theorem 3.2.

6. Numerical Tests

In the numerical part of this paper, we computationally justify our theoretical results form Theorems 3.1, 3.2 and 3.3. We examine the suggested fourteen cases according to our theorems. For the spatial and temporal discretization of the system (1.6), we use a second-order finite difference method in time and space for the space-time domain $[0, L] \times\left[0, T_{e}\right]=[0,1] \times[0,10]$. Thereafter, we implement the conservative Lax-Wendroff scheme. Finally, we discuss the computational confirmation of our theoretical results. Moreover, we compare these fourteen tests accordingly. We would also like to mention that, for references for similar construction, we invite the readers to see [36-39]. According to the assumptions and conditions of our theorems, we chose to simulate the temporal evolution of the waves for the following tests:

From Theorem 3.1, we examine the following cases

- TEST 1:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=0 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=q(x)=2-\frac{1}{1+x}$.

- TEST 2:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=0 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=q(x)=2-\frac{1}{1+x}$.

- TEST 3:
(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=q(x)=2-\frac{1}{1+x}$.

From Theorem 3.2, we examine the following cases

- TEST 4:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=0 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=2+\frac{1}{1+x}$ and $q(x)=2$.

- TEST 5:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=0 ; a_{1}=2 ; a_{2}=0.5 ;$ and $a_{3}=2$.
(ii) $q(x)=2+\frac{1}{1+x}$ and $p(x)=2$.

- TEST 6:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=p(x)=2$.

- TEST 7:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=0 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=2$ and $q(x)=2+\frac{1}{1+x}$.

- TEST 8:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=0 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=2$ and $p(x)=2+\frac{1}{1+x}$.

- TEST 9:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=p(x)=2+\frac{1}{1+x}$.

From Theorem 3.3, we examine the following cases

- TEST 10:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=0 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $p(x)=2+\frac{1}{1+x}$ and $q(x)=2-\frac{1}{1+x}$.

- TEST 11:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=0 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=2-\frac{1}{1+x}$ and $p(x)=2$.

- TEST 12:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=0 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=2-\frac{1}{1+x}$ and $p(x)=2+\frac{1}{1+x}$.

- TEST 13:
(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=2+\frac{1}{1+x}$ and $p(x)=2$.

- TEST 14:

(i) $\rho_{u}=1 ; \rho_{z}=1 ; \gamma=1 ; \beta=1 ; a_{1}=2 ; a_{2}=0.5$; and $a_{3}=2$.
(ii) $q(x)=2+\frac{1.1}{1+x}$ and $p(x)=2+\frac{1}{1+x}$.

To ensure the numerical stability of the implemented numerical scheme, we chose to design our code to satisfy the spatiotemporal Courant-Friedrichs-Lewy (CFL) condition, given as $\Delta t<0.5 \Delta x$, where Δt represents the time step and Δx is the spatial step. The spatial interval $[0,1]$ has been subdivided
into 500 subintervals, whereas the temporal interval $\left[0, T_{e}\right]=[0,10]$ was deduced from the stability condition above. We ran our code for 20000 time steps by using the following initial conditions:

$$
\begin{array}{cc}
u(x, 0)=(1-x) x \text { and } u_{t}(x, 0)=0 & \text { in }[0,1] . \tag{6.1}\\
z(x, 0)=\sin (\pi x) \text { and } z_{t}(x, 0)=0 & \text { in }[0,1] .
\end{array}
$$

Figure 1. TEST 1, The cross sections for temporal behavior of the solutions u, z and the corresponding polynomial decay of the energy function.

Figure 2. TEST 2, The cross sections of the behavior for waves u, z and the corresponding polynomial decay of the energy function.

Figure 3. TEST 3, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

In the first block of the numerical Tests $1-3$, we examined the polynomial decay of the energy derived from u and z. These results were proved in Theorem 3.1. Given the initial and boundary
conditions 6.1 and the parameters mentioned above (see TEST 1-3, (i) and (ii)), in Figures 1-3,we have plotted the energy function and the three cross sections at $x=0.25,0.5$ and at 0.75 , where the polynomial decay of the energy is clearly assured.

In the second block of the numerical Tests 4-6, we evaluated the polynomial decay of the energy. These results were proved in Theorem 3.2. Given the same initial and boundary conditions in 6.1 for TEST 4-6, (i) and (ii), in Figures 4-6, we have plotted the energy function and the three cross sections at $x=0.25,0.5$ and 0.75 , where the exponential decay of the energy has been numerically proved.

Figure 4. TEST 4, The cross sections of the wave behavior for u, z and the corresponding exponential decay of the energy function.

Figure 5. TEST 5, The cross sections of the wave behavior for u, z and the corresponding exponential decay of the energy function.

Figure 6. TEST 6, The cross sections of the wave behavior for u, z and the corresponding exponential decay of the energy function.

In the third block of the numerical Tests $7-9$, we examine again the polynomial decay of the energy.

These results have been proven in the last three cases of Theorem 3.2. Given the same initial and boundary conditions in 6.1 and the parameters mentioned above (see TEST 7-9, (i) and (ii)), in Figures $7-9$, we have plotted the energy function and the three cross sections $x=0.25,0.5$, and 0.75 , where the polynomial decay of the energy has been numerically proved.

Figure 7. TEST 7, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 8. TEST 8, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 9. TEST 9, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

In the fourth block of the numerical Tests 10-14, we examined other cases leading to the polynomial decay of the energy. These results have been proven in the last three cases of Theorem 3.3. Under the same initial and boundary conditions in 6.1 and the parameters mentioned above (see TEST 10-14,
(i) and (ii)), in Figures 10-14, we have plotted the energy function and the three cross sections at $x=0.25,0.5$ and 0.75 , where the polynomial decay of the energy has been numerically proved.

Finally, it should be stressed that our numerical simulations show the energy decay that was proved in Theorems 3.1, 3.2 and 3.3. Obviously, in some cases the polynomial decay could be easily deduced from the exponential decay behavior of the energy. This result can be accepted, since the required and expected result is the polynomial one. We are pretty sure that for other choices of the initial solutions and a rigorous choice of the functional parameters, we could get a clear discrepancy between the energy functions reflecting the polynomial and exponential decays.

Figure 10. TEST 10, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 11. TEST 11, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 12. TEST 12, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 13. TEST 13, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

Figure 14. TEST 14, The cross sections of the wave behavior for u, z and the corresponding polynomial decay of the energy function.

7. Conclusion

In this study, we considered a swelling elastic system with two nonzero dampings of the variable exponent type. We discussed different cases and proved that the system is exponentially and polynomially stable, and that the stability results depend on the values of $p_{1}, p_{2}, q_{1}, q_{2}$. In addition, we conclude that the decay estimate is not necessarily improved if the system has two dampings.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors thank King Fahd University of Petroleum and Minerals (KFUPM) and the University of Sharjah (RGs MASEP \& BioInformatics FG) for their continuous supports.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. D. Ieşan, On the theory of mixtures of thermoelastic solids, J. Therm. Stress. 14 (1991), 389-408. https://doi.org/10.1080/01495739108927075
2. R. Quintanilla, Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation, J. Comput. Appl. Math., 145 (2002), 525-533. https://doi.org/10.1016/S0377-0427(02)00442-9
3. L. Payne, J. Rodrigues, B. Straughan, Effect of anisotropic permeability on darcy's law, Math. Methods Appl. Sci., 24 (2001), 427-438. https://doi.org/10.1002/mma. 228
4. R. L. Handy, A stress path model for collapsible loess, Genesis and Properties of Collapsible Soils, Dordrecht: Springer, 1995, 33-47. https://doi.org/10.1007/978-94-011-0097-7
5. R. Leonard, Expansive soils. Shallow Foundation, Kansas: Regent Centre, University of Kansas, 1989.
6. A. C. Eringen, A continuum theory of swelling porous elastic soils, Int J Eng Sci, 32 (1994), 1337-1349. https://doi.org/10.1016/0020-7225(94)90042-6
7. A. Bedford, D. S. Drumheller, Theories of immiscible and structured mixtures, Int J Eng Sci, 21 (1983), 863-960. https://doi.org/10.1016/0020-7225(83)90071-X
8. J. M. Wang, B. Z. Guo, On the stability of swelling porous elastic soils with fluid saturation by one internal damping, IMA J Appl Math, 71 (2006), 565-582. https://doi.org/10.1093/imamat/hx1009
9. A. Ramos, M. Freitas, D. Almeida Jr, A. Noé, M. D. Santos, Stability results for elastic porous media swelling with nonlinear damping, J. Math. Phys., 61 (2020), 101505. https://doi.org/10.1063/5.0014121
10. A. M. Al-Mahdi, M. M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), 140. https://doi.org/10.1186/s13661-019-1253-6
11. T. A. Apalara, General stability result of swelling porous elastic soils with a viscoelastic damping, Z Angew Math Phys, 71 (2020), 1-10. https://doi.org/10.1007/s00033-020-01427-0
12. A. Youkana, A. M. Al-Mahdi, S. A. Messaoudi, General energy decay result fora viscoelastic swelling porous-elastic system, Z Angew Math Phys, 73 (2022), 1-17. https://doi.org/10.1007/s00033-022-01696-x
13. T. A. Apalara, M. O. Yusuf, B. A. Salami, On the control of viscoelastic damped swelling porous elastic soils with internal delay feedbacks, J. Math. Anal. Appl., 504 (2021), 125429. https://doi.org/10.1016/j.jmaa.2021.125429
14. P. X. Pamplona, J. E. M. Rivera, R. Quintanilla, Stabilization in elastic solids with voids, J. Math. Anal. Appl., 350 (2009), 37-49. https://doi.org/10.1016/j.jmaa.2008.09.026
15. A. Magãna, R. Quintanilla, On the time decay of solutions in porous-elasticity with quasi-static microvoids, J. Math. Anal. Appl., 331 (2007), 617-630. https://doi.org/10.1016/j.jmaa.2006.08.086
16. J. Muñoz-Rivera, R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296-1309. https://doi.org/10.1016/j.jmaa.2007.06.005
17. A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87 (2008), 451-464. https://doi.org/10.1080/00036810802035634
18. S. A. Messaoudi, A. Fareh, General decay for a porous-thermoelastic system with memory: the case of nonequal speeds, Acta Math. Sci., 33 (2013), 23-40. https://doi.org/10.1016/S0252-9602(12)60192-1
19. T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457-471. https://doi.org/10.1016/j.jmaa.2017.08.007
20. T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J Dyn Control Syst, 25 (2019), 311-322. https://doi.org/10.1007/s10883-018-9407-x
21. B. Feng, T. A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl., 470 (2019), 1108-1128. https://doi.org/10.1016/j.jmaa.2018.10.052
22. B. Feng, M. Yin, Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds, Math Mech Solids, 24 (2019), 2361-2373. https://doi.org/10.1177/1081286518757299
23. P. S. Casas, R. Quintanilla, Exponential decay in one-dimensional porous thermo-elasticity, Mech Res Commun, 32 (2005), 652-658. https://doi.org/10.1016/j.mechrescom.2005.02.015
24. M. Santos, A. Campelo, D. S. Almeida Júnior, On the decay rates of porous elastic systems, J Elast, 127 (2017), 79-101. https://doi.org/10.1007/s 10659-016-9597-y
25. T. A. Apalara, General stability of memory-type thermoelastic timoshenko beam acting on shear force, Continuum Mech. Thermodyn., 30 (2018), 291-300. https://doi.org/10.1007/s00161-017-0601-y
26. F. Ammar-Khodja, A. Benabdallah, J. M. Rivera, R. Racke, Energy decay for timoshenko systems of memory type, J. Differ. Equ., 194 (2003), 82-115. https://doi.org/10.1016/S0022-0396(03)00185-2
27. A. M. Al-Mahdi, M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, New decay results for a viscoelastic-type timoshenko system with infinite memory, Z Angew Math Phys, 72 (2021), 1-24. https://doi.org/10.1007/s00033-020-01446-x
28. E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. https://doi.org/10.1007/s00205-002-0208-7
29. M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Heidelberg: Springer Berlin, 2000.
30. S. Antontsev, Wave equation with $p(x, t)$-laplacian and damping term: existence and blow-up, Differ. Equ. Appl, 3 (2011), 503-525. https://doi.org/10.1016/j.crme.2011.09.001
31. S. Antontsev, Wave equation with $p(x, t)$-laplacian and damping term: Blow-up of solutions, Cr Mecanique, 339 (2011), 751-755. https://doi.org/10.1016/j.crme.2011.09.001
32. S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl Anal, 96 (2017), 1509-1515. https://doi.org/10.1080/00036811.2016.1276170
33. S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
34. L. Sun, Y. Ren, W. Gao, Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources, Comput. Math. Appl., 71 (2016) , 267-277. https://doi.org/10.1016/j.camwa.2015.11.016
35. S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Method. Appl. Sci., 45 (2020), 8389-8411. https://doi.org/10.1002/mma. 7141
36. A. M. Al-Mahdi, M. M. Al-Gharabli, M. Zahri, Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity, Math. Control Relat F, 13 (2023), 605-630. https://doi.org/10.3934/mcrf. 2022010
37. A. Al-Mahdi, M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single non-linear variable exponent damping: theory and numerics, Z Angew Math Phys, 74 (2023), 72. https://doi.org/10.1007/s00033-023-01962-6
38. S. A. M. Muhammad, I. Mustafa, M. Zahri, Theoretical and computational results of a wave equation with variable exponent and time dependent nonlinear damping, Arab. J. Math., 10 (2020), 443-458. https://doi.org/10.1007/s40065-021-00312-6
39. Salim A. Messaoudi, Mostafa Zahri, Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities, Topol Methods Nonlinear Anal, 59 (2022), 851-866. https://doi.org/10.12775/TMNA.2021.039

AIMS Press
© 2024 The Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

