Research article

Systems of two-dimensional complex partial differential equations for bi-polyanalytic functions

  • Received: 27 June 2024 Revised: 21 August 2024 Accepted: 27 August 2024 Published: 06 September 2024
  • MSC : 30C45, 32A30

  • A class of Schwarz problems with the conditions concerning the real and imaginary parts of high-order partial differentiations for polyanalytic functions was discussed first on the bicylinder. Then, with the particular solution to the Schwarz problem for polyanalytic functions, a Dirichlet problem for bi-polyanalytic functions was investigated on the bicylinder. From the perspective of series, the specific representation of the solution was obtained. In this article, a novel and effective method for solving boundary value problems, with the help of series expansion, was provided. This method can also be used to solve other types of boundary value problems or complex partial differential equation problems of other functions in high-dimensional complex spaces.

    Citation: Yanyan Cui, Chaojun Wang. Systems of two-dimensional complex partial differential equations for bi-polyanalytic functions[J]. AIMS Mathematics, 2024, 9(9): 25908-25933. doi: 10.3934/math.20241265

    Related Papers:

  • A class of Schwarz problems with the conditions concerning the real and imaginary parts of high-order partial differentiations for polyanalytic functions was discussed first on the bicylinder. Then, with the particular solution to the Schwarz problem for polyanalytic functions, a Dirichlet problem for bi-polyanalytic functions was investigated on the bicylinder. From the perspective of series, the specific representation of the solution was obtained. In this article, a novel and effective method for solving boundary value problems, with the help of series expansion, was provided. This method can also be used to solve other types of boundary value problems or complex partial differential equation problems of other functions in high-dimensional complex spaces.



    加载中


    [1] X.-Z. Zhang, A. Khalid, M. Inc, A. Rehan, K. S. Nisar, M. S. Osman, Cubic spline solutions of the ninth order linear and non-linear boundary value problems, Alex. Eng. J., 61 (2022), 11635–11649. https://doi.org/10.1016/j.aej.2022.05.003 doi: 10.1016/j.aej.2022.05.003
    [2] F. A. Shah, M. Irfan, K. S. Nisar, R. T. Matoog, E. E. Mahmoud, Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions, Results Phys., 24 (2021), 104123. https://doi.org/10.1016/j.rinp.2021.104123 doi: 10.1016/j.rinp.2021.104123
    [3] K. S. Nisar, J. Ali, M. K. Mahmood, D. Ahmad, S. Ali, Hybrid evolutionary pad$\acute{e}$ approximation approach for numerical treatment of nonlinear partial differential equations, Alex. Eng. J., 60 (2021), 4411–4421. https://doi.org/10.1016/j.aej.2021.03.030 doi: 10.1016/j.aej.2021.03.030
    [4] J. Sander, Viscous fluids elasticity and function theory, Trans. Amer. Math. Soc., 98 (1961), 85–147.
    [5] W. Lin, T.-C. Woo, On the bi-analytic functions of type $(\lambda, k)$, Acta Scientiarum Naturalium Universitatis Sunyantseni, 1 (1965), 1–19.
    [6] L. Hua, W. J. Lin, C. Q. Wu, Second order systems of partial differential equations in the plane, London-Boston: Pitman Advanced Publishing Program, 1985.
    [7] R. P. Gilbert, W. Lin, Function theoretic solutions to problems of orthotropic elasticity, J. Elasticity, 15 (1985), 143–154. https://doi.org/10.1007/BF00041989 doi: 10.1007/BF00041989
    [8] L. I. Chibrikova, W. Lin, Applications of symmetry methods in basic problems of orthotropic, Appl. Anal., 73 (1999), 19–43. https://doi.org/10.1080/00036819908840761 doi: 10.1080/00036819908840761
    [9] Y. Z. Xu, Riemann problem and inverse Riemann problem of $(\lambda, 1)$ bi-analytic functions, Complex Var. Elliptic, 52 (2007), 853–864. http://doi.org/10.1080/17476930701483809 doi: 10.1080/17476930701483809
    [10] A. Kumar, Riemann hilbert problem for a class of nth order systems, Complex Variables Theory and Application, 25 (1994), 11–22. https://doi.org/10.1080/17476939408814726 doi: 10.1080/17476939408814726
    [11] M. B. Balk, Polyanalytic functions, Berlin: Akademie Verlag, 1991.
    [12] A. Kumar, R. Prakash, Boundary value problems for the Poisson equation and bi-analytic functions, Complex Variables Theory and Application, 50 (2005), 597–609. http://doi.org/10.1080/02781070500086958 doi: 10.1080/02781070500086958
    [13] H. Begehr, A. Kumar, Boundary value problems for bi-polyanalytic functions, Appl. Anal., 85 (2006), 1045–1077. https://doi.org/10.1080/00036810600835110 doi: 10.1080/00036810600835110
    [14] H. Begehr, A. Chaudhary, A. Kumar. Bi-polyanalytic functions on the upper half plane, Complex Var. Elliptic, 55 (2010), 305–316. https://doi.org/10.1080/17476930902755716 doi: 10.1080/17476930902755716
    [15] J. Lin, Y. Z. Xu, H. Li, Decoupling of the quasistatic system of thermoelasticity with Riemann problems on the bounded simply connected domain, Math. Method. Appl. Sci., 41 (2018), 1377–1387. https://doi.org/10.1002/mma.4669 doi: 10.1002/mma.4669
    [16] J. Lin, Y. Z. Xu, Riemann problem of $(\lambda, k)$ bi-analytic functions, Appl. Anal., 101 (2022), 3804–3815. https://doi.org/10.1080/00036811.2021.1987417 doi: 10.1080/00036811.2021.1987417
    [17] J. Lin, A class of inverse boundary value problems for $(\lambda, 1)$ bi-analytic functions, Wuhan Univ. J. Nat. Sci., 28 (2023), 185–191. https://doi.org/10.1051/wujns/2023283185 doi: 10.1051/wujns/2023283185
    [18] N. Vasilevski, On polyanalytic functions in several complex variables, Complex Anal. Oper. Theory, 17 (2023), 80. https://doi.org/10.1007/s11785-023-01386-0 doi: 10.1007/s11785-023-01386-0
    [19] P. Drygaś, V. Mityushev, Lattice sums for double periodic polyanalytic functions, Anal. Math. Phys., 13 (2023), 75. https://doi.org/10.1007/s13324-023-00838-2 doi: 10.1007/s13324-023-00838-2
    [20] Y. Y. Cui, Z. F. Li, Y. H. Xie, Y. Y. Qiao, The nonlinear boundary value problem for k holomorphic functions in $\mathbb{C}^2$, Acta. Math. Sci., 43 (2023), 1571–1586. https://doi.org/10.1007/s10473-023-0408-9 doi: 10.1007/s10473-023-0408-9
    [21] W. L. Blair, An atomic representation for Hardy classes of solutions to nonhomogeneous Cauchy-Riemann equations, J. Geom. Anal., 33 (2023), 307. https://doi.org/10.1007/s12220-023-01374-y doi: 10.1007/s12220-023-01374-y
    [22] H. Begehr, A. Kumar, Bi-analytic functions of several variables, Complex Variables, Theory and Application, 24 (1994), 89–106. https://doi.org/10.1080/17476939408814703 doi: 10.1080/17476939408814703
    [23] A. Kumar, A generalized Riemann boundary problem in two variables, Arch. Math., 62 (1994), 531–538. https://doi.org/10.1007/BF01193741 doi: 10.1007/BF01193741
    [24] W.-X. Ma, Type ($\lambda^*, \lambda$) reduced nonlocal integrable AKNS equations and their soliton solutions, Appl. Numer. Math., 199 (2024), 105–113. https://doi.org/10.1016/j.apnum.2022.12.007 doi: 10.1016/j.apnum.2022.12.007
    [25] W.-X. Ma, General solution to a nonlocal linear differential equation of first-order, Qual. Theory Dyn. Syst., 23 (2024), 177. https://doi.org/10.1007/s12346-024-01036-6 doi: 10.1007/s12346-024-01036-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(409) PDF downloads(20) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog