Research article

A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation

  • Received: 12 September 2024 Revised: 22 October 2024 Accepted: 08 November 2024 Published: 19 November 2024
  • MSC : 65F10, 65H10, 90C30, 90C33

  • Complex physical occurrences currently need the use of nonlinear fractional partial differential equations. This paper provides a new approach to using the conformable derivative of Atangana to achieve exact travelling wave solutions to the space time-fractional Phi-4 problem. Our method enables a more profound comprehension of complex mathematical physics processes. We validate the solutions and demonstrate the effectiveness of our approaches in solving difficult nonlinear problems in nuclear and particle physics. Singular solutions can be retrieved by using the proposed method on nonlinear partial differential equations (NFPDEs). Our results are shown using contour and three-dimensional charts, which demonstrate various soliton formations for varying parameter values in the nonlinear zone. This study contributes to our growing knowledge of optical soliton.

    Citation: Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma. A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation[J]. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564

    Related Papers:

  • Complex physical occurrences currently need the use of nonlinear fractional partial differential equations. This paper provides a new approach to using the conformable derivative of Atangana to achieve exact travelling wave solutions to the space time-fractional Phi-4 problem. Our method enables a more profound comprehension of complex mathematical physics processes. We validate the solutions and demonstrate the effectiveness of our approaches in solving difficult nonlinear problems in nuclear and particle physics. Singular solutions can be retrieved by using the proposed method on nonlinear partial differential equations (NFPDEs). Our results are shown using contour and three-dimensional charts, which demonstrate various soliton formations for varying parameter values in the nonlinear zone. This study contributes to our growing knowledge of optical soliton.



    加载中


    [1] A. Khan, T. Abdeljawad, J. F. Gomez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685
    [2] M. Aslam, R. Murtaza, T. Abdeljawad, G. U. Rahman, A. Khan, H. Khan, et al., A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 107. https://doi.org/10.1186/s13662-021-03264-5 doi: 10.1186/s13662-021-03264-5
    [3] H. Khan, Z. A. Khan, H. Tajadodi, A. Khan, Existence and data-dependence theorems for fractional impulsive integro-differential system, Adv. Differ. Equ., 2020 (2020), 458. https://doi.org/10.1186/s13662-020-02823-6 doi: 10.1186/s13662-020-02823-6
    [4] A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [5] A. Khan, P. S. Scindia, S. T. Sutar, T. Abdeljawad, On stability analysis of a fractional volterra integro delay differential equation in the context of Mittag-Leffler kernel, Wave. Random Complex, 2023 (2023), 1–19. https://doi.org/10.1080/17455030.2023.2223720 doi: 10.1080/17455030.2023.2223720
    [6] H. Khan, J. Alzabut, H. Gulzar, Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model, Alex. Eng. J., 70 (2023), 665–672. https://doi.org/10.1016/j.aej.2023.02.045 doi: 10.1016/j.aej.2023.02.045
    [7] A. Berhail, N. Tabouche, M. M. Matar, J. Alzabut, On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders, Bol. Soc. Mat. Mex., 26 (2020), 303–318. https://doi.org/10.1007/s40590-019-00257-z doi: 10.1007/s40590-019-00257-z
    [8] M. Bilal, J. Iqbal, K. Shah, B. Abdalla, T. Abdeljawad, I. Ullah, Analytical solutions of the space-time fractional Kundu-Eckhaus equation by using modified extended direct algebraic method, Partial Differential Equations in Applied Mathematics, 11 (2024), 100832. https://doi.org/10.1016/j.padiff.2024.100832 doi: 10.1016/j.padiff.2024.100832
    [9] V. F. Morales-Delgado, M. A. Taneco-Hernández, J. F. Gómez-Aguilar, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, 132 (2017), 47. https://doi.org/10.1140/epjp/i2017-11341-0 doi: 10.1140/epjp/i2017-11341-0
    [10] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [11] E. M. E. Zayed, Y. A. Amer, A. H. Arnous, Functional variable method and its applications for finding exact solutions of nonlinear PDEs in mathematical physics, Sci. Res. Essays, 8 (2013), 2068–2074.
    [12] Y. Yıldırım, A. Biswas, M. Asma, P. Guggilla, S. Khan, M. Ekici, et al., Pure-cubic optical soliton perturbation with full nonlinearity, Optik, 222 (2020), 165394. https://doi.org/10.1016/j.ijleo.2020.165394 doi: 10.1016/j.ijleo.2020.165394
    [13] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53 (2016), 475–485. https://doi.org/10.1007/s10092-015-0158-8 doi: 10.1007/s10092-015-0158-8
    [14] M. Eslami, F. S. Khodadad, F. Nazari, H. Rezazadeh, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quant. Electron., 49 (2017), 391. https://doi.org/10.1007/s11082-017-1224-z doi: 10.1007/s11082-017-1224-z
    [15] I. Ullah, Dynamics behaviours of N-kink solitons in conformable Fisher-Kolmogorov-Petrovskii-Piskunov equation, Eng. Computation., 2024 (2024), 358. https://doi.org/10.1108/ec-04-2024-0358 doi: 10.1108/ec-04-2024-0358
    [16] A. Gaber, H. Ahmad, Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov method, Facta Univ.-Ser. Math., 35 (2020), 1439–1449. https://doi.org/10.22190/FUMI2005439G doi: 10.22190/FUMI2005439G
    [17] Y. Pandir, Y. Gurefe, E. Misirli, The extended trial equation method for some time fractional differential equations, Discrete Dyn. Nat. Soc., 2013 (2013), 491359. https://doi.org/10.1155/2013/491359 doi: 10.1155/2013/491359
    [18] X. D. Zhang, Y. L. Feng, Z. Y. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
    [19] S. K. Sharma, D. Kumar, A numerical study of new fractional model for convective straight fin using fractional-order Legendre functions, Chaos Soliton. Fract., 141 (2020), 110282. https://doi.org/10.1016/j.chaos.2020.110282 doi: 10.1016/j.chaos.2020.110282
    [20] D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics, Optik, 149 (2017), 439–446. https://doi.org/10.1016/j.ijleo.2017.09.066 doi: 10.1016/j.ijleo.2017.09.066
    [21] I. Ullah, K. Shah, T. Abdeljawad, M. M. Alam, A. S. Hendy, S. Barak, Dynamics behaviours of kink solitons in conformable Kolmogorov-Petrovskii-Piskunov equation, Qual. Theory Dyn. Syst., 23 (2024), 268. https://doi.org/10.1007/s12346-024-01119-4 doi: 10.1007/s12346-024-01119-4
    [22] O. Guner, A. Bekir, H. Bilgil, A note on exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201–208. https://doi.org/10.1515/anona-2015-0019 doi: 10.1515/anona-2015-0019
    [23] I. Ullah, K. Shah, S. Barak, T. Abdeljawad, S. Barak, Pioneering the plethora of soliton for the (3+1)-dimensional fractional heisenberg ferromagnetic spin chain equation, Phys. Scr., 99 (2024), 095229. https://doi.org/10.1088/1402-4896/ad6ae6 doi: 10.1088/1402-4896/ad6ae6
    [24] Y. K. Xie, Z. Wang, A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 423 (2022), 127018. https://doi.org/10.1016/j.amc.2022.127018 doi: 10.1016/j.amc.2022.127018
    [25] Y. J. Jiang, J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011 doi: 10.1016/j.cam.2011.01.011
    [26] J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
    [27] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [28] R. Özarslan, Dünya bankası reel verileri İle gayri safi yurtiçi hasıla modeline conformable türev yaklaşımı, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7 (2020), 640361. https://doi.org/10.35193/bseufbd.640361 doi: 10.35193/bseufbd.640361
    [29] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. A. Ismail, Establishing breather and N-soliton solutions for conformable Klein-Gordon equation, Open Phys., 22 (2024), 20240044. https://doi.org/10.1515/phys-2024-0044 doi: 10.1515/phys-2024-0044
    [30] L. Gelens, G. A. Anderson, J. E. Ferrell, Spatial trigger waves: positive feedback gets you a long way, Mol. Biol. Cell, 25 (2014), 3437–3716. https://doi.org/10.1091/mbc.e14-08-1306 doi: 10.1091/mbc.e14-08-1306
    [31] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. A. Ismail, Exploring families of solitary wave solutions for the fractional coupled higgs system using modified extended direct algebraic method, Fractal Fract., 7 (2023), 653. https://doi.org/10.3390/fractalfract7090653 doi: 10.3390/fractalfract7090653
    [32] B. Elma, E. Misirli, Two reliable techniques for solving conformable space-time fractional PHI-4 model arising in nuclear physics via $\beta$-derivative, Rev. Mex. Fís., 67 (2021), 050707. https://doi.org/10.31349/RevMexFis.67.050707 doi: 10.31349/RevMexFis.67.050707
    [33] I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scr., 99 (2024), 055259. https://doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
    [34] M. Bilal, J. Iqbal, K. Shah, B. Abdalla, T. Abdeljawad, I. Ullah, Analytical solutions of the space-time fractional Kundu-Eckhaus equation by using modified extended direct algebraic method, Partial Differential Equations in Applied Mathematics, 11 (2024), 100832. https://doi.org/10.1016/j.padiff.2024.100832 doi: 10.1016/j.padiff.2024.100832
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(232) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog