Citation: Saulo Orizaga, Ogochukwu Ifeacho, Sampson Owusu. On an efficient numerical procedure for the Functionalized Cahn-Hilliard equation[J]. AIMS Mathematics, 2024, 9(8): 20773-20792. doi: 10.3934/math.20241010
[1] | J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[2] | S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2 |
[3] | A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479–544. https://doi.org/10.3934/Math.2017.2.479 doi: 10.3934/Math.2017.2.479 |
[4] | S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth-i: Model and numerical method, J. Theor. Biol., 253 (2008), 524–543. https://doi.org/10.1016/j.jtbi.2008.03.027 doi: 10.1016/j.jtbi.2008.03.027 |
[5] | H. Garcke, K. F. Lam, V. Styles, Cahn-hilliard inpainting with the double obstacle potential, SIAM J. Imaging Sci., 11 (2018), 2064–2089. https://doi.org/10.1137/18M1165633 doi: 10.1137/18M1165633 |
[6] | A. L. Bertozzi, S. Esedoglu, A. Gillette, Inpainting of binary images using the cahn-hilliard equation, IEEE T. Image Proc., 16 (2007), 285–291. https://doi.org/10.1109/TIP.2006.887728 doi: 10.1109/TIP.2006.887728 |
[7] | L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32 (2002), 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 doi: 10.1146/annurev.matsci.32.112001.132041 |
[8] | J. W. Barrett, J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility, Math. Comp., 68 (1999), 487–517. |
[9] | K. Glasner, S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52–64. https://doi.org/10.1016/j.jcp.2016.03.042 doi: 10.1016/j.jcp.2016.03.042 |
[10] | H. Song, Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation, J. Comput. Appl. Math., 292 (2016), 576–590. https://doi.org/10.1016/j.cam.2015.07.030 doi: 10.1016/j.cam.2015.07.030 |
[11] | J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, et al., High accuracy benchmark problems for allen-cahn and cahn-hilliard dynamics, Commun. Comput. Phys., 26 (2019), 947–972. https://doi.org/10.4208/cicp.OA-2019-0006 doi: 10.4208/cicp.OA-2019-0006 |
[12] | J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416. https://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021 |
[13] | S. Orizaga, K. Glasner, Instability and reorientation of block copolymer microstructure by imposed electric fields, Phys. Rev. E, 93 (2016), 052504. https://doi.org/10.1103/PhysRevE.93.052504 doi: 10.1103/PhysRevE.93.052504 |
[14] | K. R. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E, 70 (2004), 051605. https://doi.org/10.1103/PhysRevE.70.051605 doi: 10.1103/PhysRevE.70.051605 |
[15] | H. Gomez, X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation, Comput. Meth. Appl. Mech. Eng., 249-252 (2012), 52–61. https://doi.org/10.1016/j.cma.2012.03.002 doi: 10.1016/j.cma.2012.03.002 |
[16] | H. Gomez, M. Bures, A. Moure, A review on computational modelling of phasetransition problems, Philos. T. Royal Soc. A: Math. Phys. Eng. Sci., 377 (2019), 20180203. https://doi.org/10.1098/rsta.2018.0203 doi: 10.1098/rsta.2018.0203 |
[17] | G. Gompper, M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116–1119. https://doi.org/10.1103/PhysRevLett.65.1116 doi: 10.1103/PhysRevLett.65.1116 |
[18] | W. Feng, Z. Guan, J. Lowengrub, C. Wang, S. M. Wise, Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized cahn–hilliard equation and its convergence analysis, J. Sci. Comput., 76 (2018), 1938–1967. https://doi.org/10.1007/s10915-018-0690-1 doi: 10.1007/s10915-018-0690-1 |
[19] | C. Zhang, J. Ouyang, C. Wang, S. M. Wise, Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized cahn-hilliard equation, J. Comput. Phys., 423 (2020), 109772. https://doi.org/10.1016/j.jcp.2020.109772 doi: 10.1016/j.jcp.2020.109772 |
[20] | A. L. Bertozzi, N. Ju, H. W. Lu, A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations, Discrete Contin. Dyn. Syst., 29 (2011), 1367–1391. https://doi.org/10.3934/dcds.2011.29.1367 doi: 10.3934/dcds.2011.29.1367 |
[21] | D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Online Proceedings Library (OPL), 529 (1998), 39. https://doi.org/10.1557/PROC-529-39 doi: 10.1557/PROC-529-39 |
[22] | S. Dai, Q. Du, Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility, J. Comput. Phys., 310 (2016), 85–108. https://doi.org/10.1016/j.jcp.2016.01.018 doi: 10.1016/j.jcp.2016.01.018 |
[23] | H. D. Ceniceros, C. J. Garcia-Cervera, A new approach for the numerical solution of diffusion equations with variable and degenerate mobility, J. Comput. Phys., 246 (2013), 1–10. https://doi.org/10.1016/j.jcp.2013.03.036 doi: 10.1016/j.jcp.2013.03.036 |
[24] | L. N. Trefethen, Spectral Methods in MatLab, New York: SIAM, 2000. |
[25] | G. Sheng, T. Wang, Q. Du, K. G. Wang, Z. K. Liu, L. Q. Chen, Coarsening kinetics of a two phase mixture with highly disparate diffusion mobility, Commun. Comput. Phys., 8 (2010), 249–264. https://doi.org/10.4208/cicp.160709.041109a doi: 10.4208/cicp.160709.041109a |
[26] | J. Zhu, L. Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variablemobility cahn-hilliard equation: application of a semi-implicit fourier spectral method, Phys. Rev. E, 60 (1999), 3564. https://doi.org/10.1103/PhysRevE.60.3564 doi: 10.1103/PhysRevE.60.3564 |
[27] | D. Li, Z. Qiao, T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), 1653–1681. https://doi.org/10.1137/140993193 doi: 10.1137/140993193 |
[28] | D. Li, Z. Qiao, On second order semi-implicit fourier spectral methods for 2d Cahn-Hilliard equations, J. Sci. Comput., 70 (2017), 301–341. https://doi.org/10.1007/s10915-016-0251-4 doi: 10.1007/s10915-016-0251-4 |
[29] | Z. Xu, H. Zhang, Stabilized semi-implicit numerical schemes for the Cahn-Hilliard-like equation with variable interfacial parameter, J. Comput. Appl. Math., 346 (2019), 307–322. https://doi.org/10.1016/j.cam.2018.06.031 doi: 10.1016/j.cam.2018.06.031 |
[30] | L. Duchemin, J. Eggers, The explicit-implicit-null method: Removing the numerical instability of PDEs, J. Comput. Phys., 263 (2014), 37–52. https://doi.org/10.1016/j.jcp.2014.01.013 doi: 10.1016/j.jcp.2014.01.013 |
[31] | Y. Yan, W. Chen, C. Wang, S. M. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572–602. https://doi.org/10.4208/cicp.OA-2016-0197 doi: 10.4208/cicp.OA-2016-0197 |
[32] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Berlin: Springer Science Business Media, 2007. |
[33] | J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153 |
[34] | A. Christlieb, J. Jones, K. Promislow, B. Wetton, M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), 193–215. https://doi.org/10.1016/j.jcp.2013.09.049 doi: 10.1016/j.jcp.2013.09.049 |
[35] | A. Doelman, G. Hayrapetyan, K. Promislow, B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized cahn-hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640–3677. https://doi.org/10.1137/13092705X doi: 10.1137/13092705X |
[36] | C. Zhang, J. Ouyang, Unconditionally energy stable second-order numerical schemes for the functionalized cahn–hilliard gradient flow equation based on the SAV approach, Comput. Math. Appl., 84 (2021), 16–38. https://doi.org/10.1016/j.camwa.2020.12.003 doi: 10.1016/j.camwa.2020.12.003 |
[37] | K. Promislow, Q. Wu, Existence of pearled patterns in the planar functionalized cahn-hilliard equation, J. Diff. Equ., 259 (2015), 3298–3343. https://doi.org/10.1016/j.jde.2015.04.022 doi: 10.1016/j.jde.2015.04.022 |
[38] | Z. Tan, L. Chen, J. Yang, Generalized allen-cahn-type phase-field crystal model with fcc ordering structure and its conservative high-order accurate algorithm, Comput. Phys. Commun., 286 (2023), 108656. https://doi.org/10.1016/j.cpc.2023.108656 doi: 10.1016/j.cpc.2023.108656 |
[39] | N. Gavish, J. Jones, Z. Xu, A. Christlieb, K. Promislow, Variational models of network formation and ion transport: Applications to perfluorosulfonate ionomer membranes, Polymers, 4 (2012), 630–655. https://doi.org/10.3390/polym4010630 doi: 10.3390/polym4010630 |
[40] | J. Burkardt, M. Gunzburger, W. Zhao, High-precision computation of the weak galerkin methods for the fourth-order problem, Numer. Algor., 84 (2020), 181–205. https://doi.org/10.1007/s11075-019-00751-5 doi: 10.1007/s11075-019-00751-5 |