Research article Special Issues

On an efficient numerical procedure for the Functionalized Cahn-Hilliard equation

  • Received: 08 May 2024 Revised: 12 June 2024 Accepted: 20 June 2024 Published: 26 June 2024
  • MSC : 65T50, 65M99

  • The Functionalized Cahn Hilliard (FCH) equation was used to model micro-phase separation in mixtures of amphiphilic molecules in solvent. In this paper, we proposed a Tri-Harmonic Modified (THM) numerical approach for efficiently solving the FCH equation with symmetric double well potential by extending the ideas of the Bi-harmonic Modified (BHM) method. THM formulation allowed for the nonlinear terms in the FCH equation to be computed explicitly, leading to fast evaluations at every time step. We investigated the convergence properties of the new approach by using benchmark problems for phase-field models, and we directly compared the performance of the THM method with the recently developed scalar auxiliary variable (SAV) schemes for the FCH equation. The THM modified scheme was able to produce smaller errors than those obtained from the SAV formulation. In addition to this direct comparison with the SAV schemes, we tested the adaptability of our scheme by using an extrapolation technique which allows for errors to be reduced for longer simulation runs. We also investigated the adaptability of the THM method to other 6th order partial differential equations (PDEs) by considering a more complex form of the FCH equation with nonsymmetric double well potential. Finally, we also couple the THM scheme with a higher order time-stepping method, (implicit-explicit) IMEX schemes, to demonstrate the robustness and adaptability of the new scheme. Numerical experiments are presented to investigate the performance of the new approach.

    Citation: Saulo Orizaga, Ogochukwu Ifeacho, Sampson Owusu. On an efficient numerical procedure for the Functionalized Cahn-Hilliard equation[J]. AIMS Mathematics, 2024, 9(8): 20773-20792. doi: 10.3934/math.20241010

    Related Papers:

  • The Functionalized Cahn Hilliard (FCH) equation was used to model micro-phase separation in mixtures of amphiphilic molecules in solvent. In this paper, we proposed a Tri-Harmonic Modified (THM) numerical approach for efficiently solving the FCH equation with symmetric double well potential by extending the ideas of the Bi-harmonic Modified (BHM) method. THM formulation allowed for the nonlinear terms in the FCH equation to be computed explicitly, leading to fast evaluations at every time step. We investigated the convergence properties of the new approach by using benchmark problems for phase-field models, and we directly compared the performance of the THM method with the recently developed scalar auxiliary variable (SAV) schemes for the FCH equation. The THM modified scheme was able to produce smaller errors than those obtained from the SAV formulation. In addition to this direct comparison with the SAV schemes, we tested the adaptability of our scheme by using an extrapolation technique which allows for errors to be reduced for longer simulation runs. We also investigated the adaptability of the THM method to other 6th order partial differential equations (PDEs) by considering a more complex form of the FCH equation with nonsymmetric double well potential. Finally, we also couple the THM scheme with a higher order time-stepping method, (implicit-explicit) IMEX schemes, to demonstrate the robustness and adaptability of the new scheme. Numerical experiments are presented to investigate the performance of the new approach.


    加载中


    [1] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [2] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [3] A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479–544. https://doi.org/10.3934/Math.2017.2.479 doi: 10.3934/Math.2017.2.479
    [4] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth-i: Model and numerical method, J. Theor. Biol., 253 (2008), 524–543. https://doi.org/10.1016/j.jtbi.2008.03.027 doi: 10.1016/j.jtbi.2008.03.027
    [5] H. Garcke, K. F. Lam, V. Styles, Cahn-hilliard inpainting with the double obstacle potential, SIAM J. Imaging Sci., 11 (2018), 2064–2089. https://doi.org/10.1137/18M1165633 doi: 10.1137/18M1165633
    [6] A. L. Bertozzi, S. Esedoglu, A. Gillette, Inpainting of binary images using the cahn-hilliard equation, IEEE T. Image Proc., 16 (2007), 285–291. https://doi.org/10.1109/TIP.2006.887728 doi: 10.1109/TIP.2006.887728
    [7] L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32 (2002), 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 doi: 10.1146/annurev.matsci.32.112001.132041
    [8] J. W. Barrett, J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility, Math. Comp., 68 (1999), 487–517.
    [9] K. Glasner, S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52–64. https://doi.org/10.1016/j.jcp.2016.03.042 doi: 10.1016/j.jcp.2016.03.042
    [10] H. Song, Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation, J. Comput. Appl. Math., 292 (2016), 576–590. https://doi.org/10.1016/j.cam.2015.07.030 doi: 10.1016/j.cam.2015.07.030
    [11] J. M. Church, Z. Guo, P. K. Jimack, A. Madzvamuse, K. Promislow, B. Wetton, et al., High accuracy benchmark problems for allen-cahn and cahn-hilliard dynamics, Commun. Comput. Phys., 26 (2019), 947–972. https://doi.org/10.4208/cicp.OA-2019-0006 doi: 10.4208/cicp.OA-2019-0006
    [12] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416. https://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021
    [13] S. Orizaga, K. Glasner, Instability and reorientation of block copolymer microstructure by imposed electric fields, Phys. Rev. E, 93 (2016), 052504. https://doi.org/10.1103/PhysRevE.93.052504 doi: 10.1103/PhysRevE.93.052504
    [14] K. R. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E, 70 (2004), 051605. https://doi.org/10.1103/PhysRevE.70.051605 doi: 10.1103/PhysRevE.70.051605
    [15] H. Gomez, X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation, Comput. Meth. Appl. Mech. Eng., 249-252 (2012), 52–61. https://doi.org/10.1016/j.cma.2012.03.002 doi: 10.1016/j.cma.2012.03.002
    [16] H. Gomez, M. Bures, A. Moure, A review on computational modelling of phasetransition problems, Philos. T. Royal Soc. A: Math. Phys. Eng. Sci., 377 (2019), 20180203. https://doi.org/10.1098/rsta.2018.0203 doi: 10.1098/rsta.2018.0203
    [17] G. Gompper, M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116–1119. https://doi.org/10.1103/PhysRevLett.65.1116 doi: 10.1103/PhysRevLett.65.1116
    [18] W. Feng, Z. Guan, J. Lowengrub, C. Wang, S. M. Wise, Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized cahn–hilliard equation and its convergence analysis, J. Sci. Comput., 76 (2018), 1938–1967. https://doi.org/10.1007/s10915-018-0690-1 doi: 10.1007/s10915-018-0690-1
    [19] C. Zhang, J. Ouyang, C. Wang, S. M. Wise, Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized cahn-hilliard equation, J. Comput. Phys., 423 (2020), 109772. https://doi.org/10.1016/j.jcp.2020.109772 doi: 10.1016/j.jcp.2020.109772
    [20] A. L. Bertozzi, N. Ju, H. W. Lu, A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations, Discrete Contin. Dyn. Syst., 29 (2011), 1367–1391. https://doi.org/10.3934/dcds.2011.29.1367 doi: 10.3934/dcds.2011.29.1367
    [21] D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Online Proceedings Library (OPL), 529 (1998), 39. https://doi.org/10.1557/PROC-529-39 doi: 10.1557/PROC-529-39
    [22] S. Dai, Q. Du, Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility, J. Comput. Phys., 310 (2016), 85–108. https://doi.org/10.1016/j.jcp.2016.01.018 doi: 10.1016/j.jcp.2016.01.018
    [23] H. D. Ceniceros, C. J. Garcia-Cervera, A new approach for the numerical solution of diffusion equations with variable and degenerate mobility, J. Comput. Phys., 246 (2013), 1–10. https://doi.org/10.1016/j.jcp.2013.03.036 doi: 10.1016/j.jcp.2013.03.036
    [24] L. N. Trefethen, Spectral Methods in MatLab, New York: SIAM, 2000.
    [25] G. Sheng, T. Wang, Q. Du, K. G. Wang, Z. K. Liu, L. Q. Chen, Coarsening kinetics of a two phase mixture with highly disparate diffusion mobility, Commun. Comput. Phys., 8 (2010), 249–264. https://doi.org/10.4208/cicp.160709.041109a doi: 10.4208/cicp.160709.041109a
    [26] J. Zhu, L. Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variablemobility cahn-hilliard equation: application of a semi-implicit fourier spectral method, Phys. Rev. E, 60 (1999), 3564. https://doi.org/10.1103/PhysRevE.60.3564 doi: 10.1103/PhysRevE.60.3564
    [27] D. Li, Z. Qiao, T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), 1653–1681. https://doi.org/10.1137/140993193 doi: 10.1137/140993193
    [28] D. Li, Z. Qiao, On second order semi-implicit fourier spectral methods for 2d Cahn-Hilliard equations, J. Sci. Comput., 70 (2017), 301–341. https://doi.org/10.1007/s10915-016-0251-4 doi: 10.1007/s10915-016-0251-4
    [29] Z. Xu, H. Zhang, Stabilized semi-implicit numerical schemes for the Cahn-Hilliard-like equation with variable interfacial parameter, J. Comput. Appl. Math., 346 (2019), 307–322. https://doi.org/10.1016/j.cam.2018.06.031 doi: 10.1016/j.cam.2018.06.031
    [30] L. Duchemin, J. Eggers, The explicit-implicit-null method: Removing the numerical instability of PDEs, J. Comput. Phys., 263 (2014), 37–52. https://doi.org/10.1016/j.jcp.2014.01.013 doi: 10.1016/j.jcp.2014.01.013
    [31] Y. Yan, W. Chen, C. Wang, S. M. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572–602. https://doi.org/10.4208/cicp.OA-2016-0197 doi: 10.4208/cicp.OA-2016-0197
    [32] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Berlin: Springer Science Business Media, 2007.
    [33] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153
    [34] A. Christlieb, J. Jones, K. Promislow, B. Wetton, M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), 193–215. https://doi.org/10.1016/j.jcp.2013.09.049 doi: 10.1016/j.jcp.2013.09.049
    [35] A. Doelman, G. Hayrapetyan, K. Promislow, B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized cahn-hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640–3677. https://doi.org/10.1137/13092705X doi: 10.1137/13092705X
    [36] C. Zhang, J. Ouyang, Unconditionally energy stable second-order numerical schemes for the functionalized cahn–hilliard gradient flow equation based on the SAV approach, Comput. Math. Appl., 84 (2021), 16–38. https://doi.org/10.1016/j.camwa.2020.12.003 doi: 10.1016/j.camwa.2020.12.003
    [37] K. Promislow, Q. Wu, Existence of pearled patterns in the planar functionalized cahn-hilliard equation, J. Diff. Equ., 259 (2015), 3298–3343. https://doi.org/10.1016/j.jde.2015.04.022 doi: 10.1016/j.jde.2015.04.022
    [38] Z. Tan, L. Chen, J. Yang, Generalized allen-cahn-type phase-field crystal model with fcc ordering structure and its conservative high-order accurate algorithm, Comput. Phys. Commun., 286 (2023), 108656. https://doi.org/10.1016/j.cpc.2023.108656 doi: 10.1016/j.cpc.2023.108656
    [39] N. Gavish, J. Jones, Z. Xu, A. Christlieb, K. Promislow, Variational models of network formation and ion transport: Applications to perfluorosulfonate ionomer membranes, Polymers, 4 (2012), 630–655. https://doi.org/10.3390/polym4010630 doi: 10.3390/polym4010630
    [40] J. Burkardt, M. Gunzburger, W. Zhao, High-precision computation of the weak galerkin methods for the fourth-order problem, Numer. Algor., 84 (2020), 181–205. https://doi.org/10.1007/s11075-019-00751-5 doi: 10.1007/s11075-019-00751-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(586) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog