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Abstract: The Functionalized Cahn Hilliard (FCH) equation was used to model micro-phase
separation in mixtures of amphiphilic molecules in solvent. In this paper, we proposed a Tri-Harmonic
Modified (THM) numerical approach for efficiently solving the FCH equation with symmetric double
well potential by extending the ideas of the Bi-harmonic Modified (BHM) method. THM formulation
allowed for the nonlinear terms in the FCH equation to be computed explicitly, leading to fast
evaluations at every time step. We investigated the convergence properties of the new approach by
using benchmark problems for phase-field models, and we directly compared the performance of
the THM method with the recently developed scalar auxiliary variable (SAV) schemes for the FCH
equation. The THM modified scheme was able to produce smaller errors than those obtained from
the SAV formulation. In addition to this direct comparison with the SAV schemes, we tested the
adaptability of our scheme by using an extrapolation technique which allows for errors to be reduced
for longer simulation runs. We also investigated the adaptability of the THM method to other 6th order
partial differential equations (PDEs) by considering a more complex form of the FCH equation with
nonsymmetric double well potential. Finally, we also couple the THM scheme with a higher order time-
stepping method, (implicit-explicit) IMEX schemes, to demonstrate the robustness and adaptability of
the new scheme. Numerical experiments are presented to investigate the performance of the new
approach.
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1. Introduction

In the context of phase field modeling, the equations that are often used to describe phase-separation
in micro and nano-structure evolution of materials are in the form of higher order parabolic nonlinear
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partial differential equations (PDEs). The Cahn Hilliard (CH) equation originally proposed in 1958 to
model phase separation in binary alloys [1], has found many other applications in physical processes
related to block-copolymers, crystal growth, drug delivery, tumor growth, and image processing [2–6].
For the extended applications of the CH equation, full material separation is prevented leading to
micro-phase separation, which is a result of interfacial energy interactions of the materials. For such
models, different pattern formations are possible, which are often related to key structural properties
of the materials [7].

The classic CH equation with constant mobility is a fourth order nonlinear PDE that derives from an
energy functional that penalizes sharp transitions and selects minima related to the two materials in the
mixture. There have been a number of numerical methods which have been proposed to solve the CH
equation using finite differences, finite elements, finite volume methods, and spectral methods [8–12].
An extended version of the CH equation equation is found in the block copolymer (BCP) equation,
which was proposed by Ohta and Kawasaki [13] to model BCP microstructure evolution. The energy
functional for the BCP equation is similar to the one used in the CH equation but there is an added
term to account for polymer stretching. Another extension for the CH equation is the phase field
crystal (PFC) equation proposed by Elder and Grant [14]. Computational approaches for CH, BCP,
and PFC equations can be found in [9, 10, 13, 15, 16].

Another very important equation in the phase field modeling area is the Functionalized
Cahn-Hilliard (FCH) equation [17], which has been used to model micro-phase separation in ternary
systems (oil-water-surfactant). The FCH equation is a sixth order parabolic PDE for which explicit
methods are not practical since they would require very small steps for numerical stability
(h ≤ Odx6), where h is the time step and dx is the grid spacing in one dimension. On the other hand,
fully implicit methods would ensure stability, but can be computationally expensive for problems in
more than one dimension. The FCH equation is a more challenging problem compared to the previous
mentioned extensions of the CH equation. The challenges are due to the wide variations in space and
time scales that need to be captured. The high PDE order makes the time evolution of spatial
discretizations very stiff. Some progress has been made in the numerical solutions to the FCH
equation [18], but more work needs to be done. Recent numerical approaches have been proposed
in [19] using the (scalar auxiliary variable) SAV method. In our approach, we extend the ideas of the
bi-harmonic modified (BHM) [20] method and introduce a parameter M3 for the FCH equation that
allows for all nonlinear terms in the equation to be computed explicitly. This in turn gives an efficient
implementation for the numerical solution at each time step. Numerical examples using the
tri-harmonic modified (THM) approach are presented and compared to the work presented in [19] to
demonstrate the efficiency, convergence properties, and ease of implementation of the proposed
methodology. The purpose of this paper is to provide a numerical approach for the FCH equation that
is efficient, accurate, and that is easy to implement with complexity similar to the original
convexity-splitting (CS) approach [21] and the BHM approach [20].

In this paper, we utilize the THM approach as the basis for the new algorithms, which are coupled
with different linear extrapolation and higher order time discretization techniques. In Section 2, we
introduce the main mathematical model for the FCH equation to be considered in the first part of the
numerical experiments. In Section 3, we explain how the THM approach can be applied to this
version of the FCH equation and we provide a stability analysis of the proposed scheme. In Section 4,
we introduce a series of benchmark problems for the FCH equation and we directly compare the

AIMS Mathematics Volume 9, Issue 8, 20773–20792.



20775

performance of the THM approach versus the SAV methodology in terms of accuracy and order of
convergence. Section 5 introduces a more complicated version of the FCH equation and we explain
the adaptability of the THM approach to such models. In addition, we also show the adaptability of
the THM approach with a higher order time stepping technique using an implicit-explicit (IMEX)
Runge-Kutta (RK) formulation.

2. Mathematical formulation

The FCH free energy is given in the form [17],

E(u) =
∫
Ω

1
2

(
−ϵ2∆u +W ′(u)

)2
− η

(
ϵ2

2
|∇u|2 +W(u)

)
dx (2.1)

where W(u) is a symmetric double well function given by W(u) = 1
4 (u2 − 1)2. Here, η > 0 is a

parameter that represents the properties of amphiphilic phase at the interface (η < 0 defines the Cahn-
Hilliard-Willmore (CHW) energy [19], which is not considered in this paper), and ϵ is a parameter that
characterizes the thickness of the diffusive interface.

The FCH equation is obtained as the H−1 gradient flow of the free energy (5.1)

ut = M∆µ (2.2)
µ = ϵ2∆ω −W ′′(u)ω + ηω (2.3)
ω = ϵ2∆u −W ′(u) (2.4)

where µ is the chemical potential, W ′(u) = u3 − u, W ′′(u) = 3u2 − 1 and M is the mobility constant.
Considering periodic boundary conditions, the scalar solution u(x, t) will evolve into configurations in
a way that the FCH energy is always nonincreasing, that is dE(u)

dt ≤ 0. Numerical solutions of the FCH
must retain this energy decreasing property. We note that this means that the scheme should produce
numerical solutions in which the energy is either constant or decreasing but not increasing over time.

3. Computational approach

The approach that we will consider for this problem relies in the extension of the BHM
approach [20]. One of the goals for this formulation is maximum simplicity. We rewrite the
Eqs (2.2)–(2.4) as

ut = ∇ · [M∇
(
ϵ4∆2u + S (u)

)
], (3.1)

S (u) = −ϵ2∆
(
W ′(u)

)
−W ′′(u)

(
ϵ2∆u −W ′(u)

)
+ η

(
ϵ2∆u −W ′(u)

)
. (3.2)

Having S (u) defined by (3.2) allows for us to write a single equation in the form

ut = ∇ · [M∇
(
ϵ4∆2u + S (u)

)
]. (3.3)

We note that (3.3) is identical to the FCH equation given by Eqs (2.2)–(2.4). The advantage of
writing the FCH in this way is that now we can consider a splitting approach by extending the ideas of
the BHM method proposed by Bertozzi [20]. Equation (3.3) is expanded by distributing the divergence
operator to give

ut = ϵ
4∇ · [M∇∆2u] + ∇ · [M∇S (u)], (3.4)
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which now is suitable for introducing a constant M3 and rewriting Eq (3.4) as

ut = M3ϵ
4∆3u + ϵ4∇ · [(M − M3)∇∆2u] + ∇ · [M∇S (u)], (3.5)

which leads to the form of the FCH equation with a tri-harmonic splitting parameter M3.

We denote the discretized approximations to the solution u by u(xi, tn) ≈ Un,i, where the time step h
is given by tn+1 = tn + h. Accounting for the first order approximation of the left-hand side of (3.5) and
treating the linear part of right-hand side in (3.5) implicitly gives the following semi-implicit scheme

Un+1 − Un

h
= Ψ(Un+1) + Φ(Un) (3.6)

where Ψ(u) = M3ϵ
4∆3u and Φ(u) = (M − M3) ϵ4∆3u + M∆S (u). We note that Eq (3.5) is the general

form of the splitting that accounts for a variable mobility case (M = M(u)), but this case is not
considered in the present problem. For problems with variable mobility, the interested reader is
referred to [22, 23]. For the class of sixth order parabolic problems, the scheme given by (3.6) could
also be referred to as the THM method. With regards to splitting approaches, a well-known CS
approach was proposed by Eyre [21] and several others have been used in the variable mobility CH
equation [20]. In addition and more recently, the PFC equation has been computed with a stabilizing
parameter [19]. Equation (3.6) can be understood as a class of splitting methods for phase
field models.

We will use Fourier pseudo-spectral methods [24] for our numerical simulations. The CH
equation and related phase field models have been implemented with Fourier spectral methods in the
past [25–29]. More recently, the FCH was implemented using Fourier spectral method in the work of
Wise et al [19] which is one of the main reasons for us to consider the same type of implementation
for our paper.

We include additional details about the spatial discretization for (3.6). The two-dimensional discrete
Fourier transform of U can be written as

U ≈
N/2−1∑

kx=−N/2

N/2−1∑
ky=−N/2

Û(kx, ky, t) exp
[
i
(
kxx + kyy

) ]
.

Consequently, the Fourier transforms of the harmonic, bi-harmonic and tri-harmonic operators can be
expressed as ∆̂U = −k2Û, ∆̂2U = k4Û, and ∆̂3U = −k6Û where k2 = k2

x + k2
y . Applying the Fourier

spectral method to (3.6), gives the the following expression:

Ûn+1 =
Ûn + hΦ(Un)̂
1 + hM3ϵ4k6 , (3.7)

which provides an efficient formula for obtaining Ûn+1, and then the inverse transform is applied to
obtain Un+1.

For the stability criteria of the THM method given by (3.6), we will use the approach presented
in [30]. Equation (3.3) is of the form ut = G(u), where G(u) = Ψ(u) + Φ(u). Using the expression
Φ(Un)̂ = G(Un)̂ − Ψ(Un)̂ in (3.7) gives the following:

Ûn+1 = Ûn +
hG(Un)̂

1 + hM3ϵ4k6 . (3.8)
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To analyze the conditions for linear stability, we consider highest order terms in G(u) to arrive
at the approximation G(Un + en)̂ ≈ G(Un + en)̂ − C0ϵ

4k6ên, which is then used in (3.8) to obtain the
amplification factor associated with the growth of the errors in Un. The amplification factor is given by

σ = 1 −
hCoϵ

4k6

1 + hM3ϵ4k6 . (3.9)

The conditions to guarantee stability of the THM scheme require that |σ| < 1, so one gets

−1 < 1 −
hCoϵ

4k6

1 + hM3ϵ4k6 < 1, − 2 < −
hCoϵ

4k6

1 + hM3ϵ4k6 < 0.

Given the quantities considered in this formulation, the less-than-zero inequality is satisfied so one
works with

−2(1 + hM3ϵ
4k6) < −hCoϵ

4k6

which can be further reduced by rearranging the terms to arrive at the following inequality

ϵ4hk6(C0 − 2M3) < 2.

In order to guarantee stability ( |σ| < 1), we satisfy the above inequality with the requirement that
(C0 − 2M3) < 0 which gives M3 > C0/2. In the context of a constant mobility case, we can set
C0 = M, which gives a minimum value for the splitting parameter in the THM method (3.6). We note
that in the analysis performed in [20], a criteria of M1 > M (M1 is the splitting parameter for fourth
order equations with constant mobility) was obtained for the original BHM approach. Following the
approach in [30], we are able to get an improved criteria for this splitting parameter threshold. We will
use M3 > M/2 for all the simulations presented in this paper.

Remark 1. We emphasize that the THM approach is different than the original CS approach since the
THM approach does not require splitting of the energy into convex and concave parts. The similarities
with our approach and the CS approach are only in the shared simplicity of the splitting which leads
to fast computations. In addition, we also make a note that the THM approach is an extension of
the original BHM approach and many benefits in terms of efficiency and ease of implementation are
inherited. Finally, in the next section we will present numerical experiments in which we show that the
THM approach leads to good numerical results when compared to the SAV formulation.

4. Numerical experiments and simulations: Part I

Our numerical experiments will be presented in two parts: The first part will be related to the
simpler version of the FCH equation and second part of the numerical experiments will include the
more general and complicated verson of the FCH equation.

Since we are proposing a new THM method, it is important for us to understand how the method
compares to the recently developed schemes for the FCH equation using a SAV formulation. We are
interested in order of convergence, accuracy and ease of implementation for the THM approach. For
the order of convergence and computing errors, there are several different forms such tests can take:

(i) We can construct a reference solution [9] using a very small time step h for a corresponding
simulation final time t f . Then simulation runs using different h values reaching t f can be compared
against this reference solution in order to compute errors and order of convergence.
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(ii) We can define an exact solution [31] and insert it into the FCH equation which will produce a
modified version of the equation. We can then apply our methods to the modified FCH and for
different choices of h we are able to compute the error since we have defined our exact solution.

In order to directly compare the performance of our schemes with those schemes presented in [19],
in particular their SAV-BDF1 (scalar auxiliary variable backward differentiation formula of order 1)
schemes, we will use a numerical test of the type (ii) for the first few test problems. We note that
SAV-BDF1 and the THM method presented in this paper are implemented using the same Fourier
pseudo-spectral approach so that we can present a fair comparison of their performance.

We can consider an exact solution, whenever available, or accurate reference solution Ure f (x, y, t)
which is constructed with a small time step size of h = 10−7 and a final time configuration of t f . We
then compute the numerical solution using the THM scheme with difference choices of h, and compare
against the reference solution at t f , and compute the L2 error with the formula

Error(h) =

√∫
Ω

|U(x, y, t f ; h) − Ure f (x, y, t f )|2 dx. (4.1)

4.1. Test problem 1

We first investigate the convergence properties for our numerical approach by solving Eq (3.3) on
Ω = [0, L]2 subject to periodic boundary conditions. For simplicity, all test problems will be considered
with periodic boundary conditions. We use Fourier pseudo-spectral discretizations in space using N
Fourier modes in each space direction [24,32]. We note that other discretizations are certainly possible
(finite differences, finite elements, finite volume). The numerical solution is obtained by solving (3.3)
with initial condition u0(x, y, t = 0) = sin x cos y, parameter values M = 1, M3 = 5, ϵ = 0.1, η = ϵ2,
L = 4π, and with 2562 Fourier modes. The solution is evolved to a final time t f and compared against
the exact solution given by

u(x, y, t) = sin x cos y cos(t). (4.2)

Equation (4.2) is the solution to the forced FCH equation which is obtained by inserting (4.2)
into (3.3), resulting in a forcing term that is used to modify the original equation [19]. To be concrete,
the form of the forced FCH equation is given by

ut = ∇ · [M∇
(
ϵ4∆2u + S (u)

)
] + F(x, y, t), (4.3)

where F(x, y, t) = cos(y) sin(x)(1.9404 cos(t) + cos(t)3(5.775 − 5.955 cos(2y) + cos(2x)(5.955 +
16.965 cos(2y))) − sin(t) + cos(t)5(−60 cos(x)2 cos(y)4 sin(x)2 + sin(x)4(30 cos(y)4 − 15 sin(2y)2))).We
compute the errors in the L2 norm. Here, we consider 3 cases for the computation of the forcing term
F(x, y, t), the implicit time level (n + 1), explicit (n), and semi-implicit (n + 1/2). In addition, we
compare our errors to the first order scheme SAV-BDF1 introduced in [19] to solve the FCH equation.
For a comprehensive review of SAV methods, which were introduced by Shen [12] to efficiently solve
gradient flow problems, we recommend the review-paper on SAV methods [33]. Our numerical
results using the THM method are presented in Figure 1. It can be seen that the new method produces
small errors for all possible evaluations of the forcing term, and, in addition, the errors from THM are
found to be smaller than those from the SAV-BDF1 method [19]. Table 1 shows that the THM method
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reaches first order convergence with no problems and it is capable to perform well when compared to
the SAV formulaton. Figure 1 (right) contains the error curves with several choices of the splitting
parameter M3. For problems using a stabilization or splitting parameter, it is possible to introduce
instability if the parameter is chosen very small (M3 ≈ 0, which defines a fully explicit problem). For
the current benchmark problem, we tested several cases and found our lowest value of M3 to be
M3 ≈ 1. For this case, we can see errors increasing for the range of values centered at h = 10−2. On
the other hand, when M3 ≥ 2, solutions remain accurate, numerical instability is suppressed, and the
scheme performs with the expected level of accuracy (see Figure 1, right).
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Figure 1. L2 errors for the forced FCH equation, with M3 = 10, t f = 0.1, Ω = [0, 4π]2, and
256 × 256 Fourier modes (left). Computed errors for different choices of M3 (right).

Table 1. Computed L2 errors for the forced FCH equation at t f = 0.1 and using the initial
condition given by u0 = sin x cos y.

h SAV-BDF1 Order THM Order

0.02/20 7.93e-04 – 8.36e-05 –
0.02/21 4.38e-04 0.86 4.45e-05 0.90
0.02/22 2.48e-04 0.82 2.45e-05 0.86
0.02/23 1.40e-04 0.82 1.37e-05 0.83
0.02/24 7.72e-05 0.86 7.76e-06 0.83
0.02/25 4.14e-05 0.90 4.35e-06 0.84
0.02/26 2.16e-05 0.94 2.39e-06 0.86
0.02/27 1.11e-05 0.96 1.28e-06 0.89
0.02/28 5.61e-06 0.98 6.73e-07 0.93
0.02/29 2.82e-06 0.99 3.46e-07 0.96
0.02/210 1.42e-06 0.99 1.75e-07 0.98
0.02/211 7.10e-07 1.00 8.85 e-08 1.00

4.2. Test problem 2

To test the performance of the proposed method for longer runs, we considered a benchmark
problem used for the FCH equation which can be found in the work done by Wise et al [19] that also
traces back to the problems tested in [34]. We solve the FCH equation given by (3.3) with the
following initial condition
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u(x, y, t = 0) = 2 exp(sin x + sin y − 2) + 2.2 exp(− sin x − sin y − 2) − 1, (4.4)

with parameters values M = 1, M3 = 5, ϵ = 0.18, η = ϵ2, L = 2π and with 1282 Fourier modes. The
simulation snapshots are taken at values for t = 0; and t = 4 (see Figure 2). We test the numerical
convergence of the method by following the numerical procedure (i), that is we construct a reference
solution for this problem using a small time step h = 10−6 using the THM method with a simple linear
extrapolation [9] and compute the L2 errors for different choices of h. Figure 3 (left) shows the error
curves for several values of M3. Local truncation errors are noticeable in this simulation and they can
be spotted for h > 10−2. To improve accuracy, we coupled the THM scheme (3.6) with a simple linear
extrapolation which is given by

Un+1 − Un

h
= Ψ(Un+1) + Φ(Un), U0 := 2Un − Un−1, (4.5)

where we have now introduced the need of knowing two consecutive steps initially. However, this is
easily accomplished since this is only required to be done during the initialization of the numerical
procedure which allows for the computation cost of the linear extrapolation technique to be very
efficient. We note that a linear extrapolation technique allows for a better choice of the initial
condition and it is known to improve accuracy of numerical solutions [9]. In particular, the work
presented in [9] is related to the classic CH equation and the PFC equation. For a detailed formulation
using linear extrapolation and nonlinear extrapolation (not considered in this paper) applied to phase
field models, we refer the readers to the work presented in [9]. We label the scheme given by (4.5) as
the THM scheme with linear extrapolation as THMLX. Computational results given by THMLX allow
for errors to be reduced and remain accurate while allowing larger time steps (h ≈ 10−1.5). The error
plots for this problem suggests h = 0.01 to be a time step that will offer sufficient accuracy for the
THM method, which coincides with the step size proposed in [19] for their SAV-BDF1 method.
Figure 3 (right) shows the energy decreasing property for THM and THMLX schemes using h = 0.01
and M3 = 5. We also demonstrate the performance of our methods by running longer simulations.
Figure 4 displays the extended dynamics for test problem 2 by using the THM method with h = 0.001
and M3 = 5. The energy decreasing property is preserved for the entire duration of the simulation (see
Figure 5). We note that the extended dynamics simulation results are in agreement with the results
presented in [19].

Figure 2. Test problem 2: initial condition (left) and final configuration at t f = 4 (right) for
FCH equation on Ω = [0, 2π]2 using 128 × 128 Fourier modes.
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Figure 3. Test problem 2: L2 errors for the FCH equation using 128× 128 Fourier modes for
various M3 values and t f = 4 (left). Right figure : energy decreasing property for THM and
THMLX with h = 0.01 and M3 = 5.

Figure 4. Extended simulation dynamics for test problem 2 using THM method with h =
0.001 and M3 = 5 with snapshots taken at t = 5, 10, 300, 500 (left to right and top to bottom).
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Figure 5. Energy evolution in test problem 2 corresponding to Figure 4.

4.3. Test problem 3

Our third test problem is aimed at testing our numerical approach with regards to correctly capturing
the meandering instability [35]. We set our initial condition to
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u(x, y, t = 0) =


−1, x > sin(y) + L/2 + 0.34
−1, x < sin(y) + L/2 − 0.34
0, otherwise.

(4.6)

with the rest of the parameters the same as in the previous test problem except for η = 0.2 and L = 4π.
We note that this type of initial condition has been used by different authors [19, 36] and a smoothing
procedure has been implemented in order to avoid the Gibbs phenomena. Details of the smoothing
procedure can be found in [19]. It is also worth mentioning that smoothing procedures are standard in
the context of spectral methods [24, 32]. We treated our initial condition with a smoothing function
found in MATLAB. In particular, we used a Gaussian filter on the initial condition with a standard
deviation of 2 which provided a smooth enough initial configuration for our schemes to run. The
function used was imgaussfilt(u0, σ), where sigma is the standard deviation. The main goal of the
smoothing process is that the spectral computations do not initially blow-up due to numerical
instability [24]. We implement the THM method using 256 × 256 Fourier modes with h = 0.001 and
M3 = 5. The computed dynamics capturing the meandering instability are presented in Figure 6
matching results in [19]. Corresponding energy evolution with the decreasing property is shown in
Figure 7.

Figure 6. FCH dynamics under meandering instability using the THM method with h =
0.001, η = 0.2, initial condition (14), and t = 0, 20, 50, 100.
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Figure 7. FCH dynamics : energy evolution corresponding to Figure 6.
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4.4. Test problem 4

We set up our final test problem from this section by using a random initial state, which is connected
to the modeling of a bilayer structure [19]. In this case, the solution to the FCH equaton represents
an amphiphilic binary mixture undergoing phase separation [37]. We let our initial condition take the
form of u(x, y, t = 0) = 0.5 + 0.001rand(x, y) and u(x, y, z, t = 0) = 0.5 + 0.001rand(x, y, z) for the 2D
and 3D cases, respectively. Simulations are presented in Figures 8–11 using the THM method with
ϵ = 0.1, η = ϵ2, and Ω = [0, 4π]d with d = 2, 3 for 2D and 3D, respectively. It can be seen that our
schemes are able to correctly capture the dynamics for the FCH equation [19] in either 2D and 3D and
they do so with an ease of implementation and efficiency provided by the THM approach. The energy
decreasing property was retained for the entire duration of the simulations (see Figures 9 and 11).

Figure 8. Phase separation process in 2D using the THM method with h = 0.01, M3 = 5 and
256 × 256 Fourier modes. Simulation snapshots taken at t = 0.3, 2, 100, 300.
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Figure 9. Phase separation in 2D: energy evolution corresponding to Figure (8).
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Figure 10. Phase separation process in 3D using the THM method with h = 0.01, M3 = 5
and 128 × 128 × 128 Fourier modes. Simulation snapshots taken at t = 2, 10, 40, 500.
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Figure 11. 3D dynamics: energy evolution corresponding to Figure 10.

5. Numerical experiments and simulations: Part II

Test problem 5 : pearling instability

Now that we have tested the performance of the THM method by solving the benchmark problems
given by test problems 1–4, we introduce a more complicated version of the FCH equation which is
given by the following energy [17, 19, 35]:

Ẽ(u) =
∫
Ω

1
2

(
ϵ2∆u − W̃ ′(u)

)2
− η1

(
ϵ2

2
|∇u|2 + η2W̃(u)

)
dx (5.1)

where ϵ is a parameter associated with thickness of the interface, and η1 > 0 and η2 are parameters
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related to the properties of the amphiphilic materials. The H−1 gradient flow for the above functional
gives the following:

ut = M∆µ (5.2)

µ =
(
ϵ2∆ − W̃ ′′(u) + η1

)
ω + (η1 − η2) W̃ ′(u) (5.3)

ω = ϵ2∆u −W ′(u) (5.4)

where W̃(u) is a double well-potential of unequal well depths given by

W̃(u) =
1
2

(u + 1)2
(
1
2

(u − 1)2 +
2
3
τ(u − 2)

)
(5.5)

which implies that W̃ ′(u) = (u + 1)(u + τ)(u − 1) and W̃ ′′(u) = (u + 1)(u − 1) + 2u(u + τ).
The THM approach applied to this version of the FCH equation (5.2) gives the following scheme,

Un+1 − Un

h
= Ψ̃(Un+1) + Φ̃(Un) (5.6)

where Ψ̃(u) = M3ϵ
4∆3u, Φ̃(u) = (M − M3) ϵ4∆3u + M∆P(u) and similar to the previous formulation

there is an associated term analogous to S (u) which is labeled as P(u) for this version of the FCH
equation and it is given by

P(u) = −ϵ2∆W̃ ′(u) − ϵ2W̃ ′′(u)∆u + W̃ ′′(u)W̃ ′(u) + η1ω + (η1 − η2)W̃ ′(u). (5.7)

In addition to the THM approach, we also incorporate a higher order time stepping approach based
on IMEX-RK schemes for the equation ut = Ψ̃(Un+1) + Φ̃(Un). The THM-IMEX2 schemes read as,

U (1) = Un + h
2 −

√
2

2
Ψ̃(U (1)) +

2 −
√

2
2
Φ̃(Un)

 (5.8)

Un+1 = Un + h
2 −

√
2

2
Ψ̃(U(n+1) +

√
2

2
Ψ̃(U (1)) +

1

2 −
√

2
Φ̃(U (1)) +

1 −
√

2

2 −
√

2
Φ̃(U(n))

 . (5.9)

We note that several phase field models have been adapted with the IMEX approach in the past in
order to increase accuracy. The classic CH equation was implemented with an IMEX scheme in the
work presented in [10]. Ceniceros presented a numerical procedure for the variable CH equation using
IMEX time stepping [23] technique. More recently a higher order IMEX scheme was used for the PFC
equation in [38]. Our current THM-IMEX2 scheme differs from all the ones mentioned since to the
best of our knowledge the THM approach has not been implemented before for the FCH equation.

We will test the numerical convergence of the method by following procedure (i), that is, we
construct a reference solution using a small time step h = 10−7 and evolve the solution to t f = 1.0. An
initial condition that illustrates the pearling instability is used in the form of an elliptical annulus
which is given by

u(x, y, t = 0) =


−1, g(x, y) > L/4 + 0.2
−1, g(x, y) < L/4 − 0.2
0, otherwise.

(5.10)
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where g(x, y) =
√

(x − L/2)2 + 0.5(y − L/2)2. Similar to the case of meandering instability, we filter
our initial condition with a Gaussian filter to obtain a smooth initial configuration. To observe the
pearling instability, we evolve the filtered initial condition to a final configuration using t f = 1 for
which the instability is visible on the longer sides of the ellipse (see Figure 12). The rest of the
parameters used in this simulation are given by L = 4π,M = 1,M3 = 5, ϵ = 0.1, η1 = 1.45ϵ, η2 = 2ϵ,
and τ = 0.125.

Figure 12. Pearling instability: 2D dynamical evolution of an elliptical annulus at time t = 0
(left figure) and a final configuration t f = 1 (right figure). Parameters are M = 1,M3 = 5, ϵ =
0.1, η1 = 1.45ϵ, η2 = 2ϵ, and τ = 0.125.

The THM-BE (which refers to the THM approach coupled with a backward Euler (BE)
approximation for the time derivative) and THM-IMEX2 computed errors are shown in Figure 13.
The errors are able to reach 1st order accuracy and reach second order accuracy for small enough
choices of the time step h. We note that the THM-IMEX2 with M3 = 5 scheme requires h < 0.01 in
order to produce stable results. For these range of values of the time step h, the THM-IMEX2
generates smaller errors than THM-BE, which well justifies the formulation. It is common for the
splitting parameter in these type of formulations to influence the stability of the numerical
results [9, 12, 19, 33, 36]. For this reason, we tried M3 = 10, 15 and we noticed that the THM-IMEX2
scheme was able to generate stable results with larger time steps h, but this came at the expense of
losing accuracy. Overall, we found that THM-IMEX2 increased the accuracy of our THM method
which can be seen in Figure 13. This improvement in accuracy demonstrates that the THM approach
can be adapted with a time stepping technique and generate accurate and stable results with the
benefits of ease of implementation. Of course, here the method of choice will be based on the
preference of the user in which a smaller time step h could be chosen to implement a slightly more
efficient THM scheme to generate accurate results. The other option is to consider a few more
computations to implement the THM-IMEX2 scheme with the benefits of added accuracy. We now
test the performance of the new THM-IMEX2 method for longer simulation runs using the same
initial condition. We note that both schemes are very efficient and are able to run in a modest laptop.
Simulation plots are presented in Figure 14 where it can be seen that the pearling instability has fully
dominated the ellipse by time t = 10 but this is followed by a reconnecting of the pearls/dots to then
evolve into a configuration that fully reconnects around t = 15 and then follows a meandering
instability for t ≥ 20. The computed energy for this simulation is presented in Figure 15 where the
energy decreasing property is displayed.
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Figure 13. L2 errors for the FCH equation capturing the pearling stability vs difference
choices of the time step h, with M3 = 5, t f = 1.0, Ω = [0, 4π]2, ϵ = 0.1, η1 = 1.45ϵ, η2 = 2ϵ,
and 256 × 256 Fourier modes.

Figure 14. 2D pearling instability dynamics of elliptic annulus using THM-IMEX2 with h =
0.01/2, M3 = 5 and 256×256 Fourier modes. Simulation snapshots taken at t = 2, 10, 20, 50.
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Figure 15. Energy evolution corresponding to the simulations presented in Figure 14. Left
figure is shown in regular scale and right figure in log scale to capture the energy decreasing
property.

Finally, we demonstrate the performance of the new methods by solving the FCH in full 3D space
variables by using parameters associated with the different solutions that the FCH equation is intended
to model in mixtures of amphiphilic molecules in solvent [17, 35, 39]. We set our initial condition
to u(x, y, z, t = 0) = 0.65 + 0.001rand(x, y, z) and run the simulations using THM-IMEX2 on Ω =
[0, 2π]3 with h = 0.001,M = 1,M3 = 5, ϵ = 0.1, η1 = 5ϵ, τ = −0.4 and t f = 4. We then vary
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η2 = 6ϵ, 4ϵ,−ϵ,−3ϵ. Simulation results are shown in Figure 16 in which level sets of the solutions
have been labeled for (u = 0.4) and (u = 0.45) with the colors yellow and purple, respectively. The
solution structures are related to a highly branched pore network η2 = 6ϵ, a pore network η2 = 4ϵ,
a pearled pore and micelle mixture η2 = −ϵ, and isolated micelles η2 = −3ϵ, which are given from
left to right and top to bottom in Figure 16. The simulation results computed with our new proposed
approach are in agreement with the results presented in [39].

Figure 16. 3D dynamics for FCH using THM-IMEX2 with h = 0.01/2, M3 = 5, ϵ =
0.1, η1 = 5ϵ and 128× 128× 128 Fourier modes. Simulation snapshots taken at t = 4 and for
different choices of η2 = 6ϵ, 4ϵ,−ϵ,−3ϵ (left to right and top to bottom).

6. Conclusions

A THM numerical approach for solving the FCH equation was proposed and the convergence
properties of the scheme were investigated using relevant benchmark problems in the phase field
community. Our methods retain the energy decreasing property and reach first and second order
convergence while producing small errors. In particular, the errors produced using the THM method
are found to be smaller than those provided by the SAV formulation [19], by way of a direct
comparison. The main advantage of our approach is that the computations are very efficient since all
nonlinearities in the equation are computed at the explicit time level. The computation cost for the
THM method is similar to the original BHM method, which was originally developed for variable
mobility problems. The THM shares a comparable ease of implementation to the original CS method,
which was originally developed for the constant mobility CH equation. One additional advantage of
the THM method is found on its simplicity. A simple splitting allows for accurate implementation of
the FCH equation under the THM approach. We note that the SAV formulation [19, 33] requires
additional stabilizer parameters for their methods to produce accurate results. In fact, two different
SAV formulations had to be derived in order to handle the two versions of the FCH equation in [19]
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which gives an edge to the THM method in ease of implementation. The THM method requires only
one simple splitting on the tri-harmonic term that relies on a single parameter M3 and does not suffer
for the required additional steps and reformulation of the energy as the SAV method [12, 19, 33]. In
addition to efficiency, our method is easy to implement and can run in a modest laptop for 2D and 3D
implementations in the course of a few hours. In addition to numerical convergence, we tested our
method for longer time runs with and without linear extrapolation in which dynamics for the FCH
equation were properly displayed by capturing the microstructure evolution of material and the more
challenging meandering type of instability. To demonstrate the robustness of the THM method, we
applied the method to a more complicated form of the FCH equation and we also coupled our method
with an IMEX time stepping technique to improve errors and to capture the pearling instability
dynamics. Additionally, we tested the performance of the THM-IMEX2 scheme in full 3D to capture
more complex dynamics associated with the more complicated version of the FCH equation. The
THM approach provides a simple and efficient implementation for the FCH equation and it produces
small errors. We believe that the proposed THM approach could serve as a powerful tool, that is easy
to implement, to study not only the FCH equation but also a general class of sixth order phase field
models and a class of 4th order problems [30, 40], for which the original BHM approach remains
applicable. The work presented in this numerical investigation can be viewed as preliminary results
and formulations of improved/extended numerical schemes that will lead to further studies and
rigorous numerical analysis. Future research work will include theoretical analysis of the energy
stability and the convergence analysis of the scheme with constant and variable mobility. We will also
study the applicability of the new approach to systems of CH equations in 2D and 3D related to the
modeling of biomedical applications.
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