Research article

A decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system

  • Received: 22 January 2021 Accepted: 24 May 2021 Published: 08 June 2021
  • MSC : 35Q30, 74S05

  • In this paper, a decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system with double well potential is constructed. The proposed scheme is based on the convex splitting of the energy functional in time and uses the mixed finite element discretzation in space. The computation of the velocity $ \mathbf{u} $ is separated from the computation of the pressure $ p $ by using an operator-splitting strategy. A Possion equation is solved to update the pressure at each time step. Unconditional stability and error estimates are analyzed in detail theoretically. Furthermore, the theoretical part is verified by several numerical examples, whose results show that the numerical examples are consistent with the results of the theoretical part.

    Citation: Haifeng Zhang, Danxia Wang, Zhili Wang, Hongen Jia. A decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system[J]. AIMS Mathematics, 2021, 6(8): 8681-8704. doi: 10.3934/math.2021505

    Related Papers:

  • In this paper, a decoupled finite element method for a modified Cahn-Hilliard-Hele-Shaw system with double well potential is constructed. The proposed scheme is based on the convex splitting of the energy functional in time and uses the mixed finite element discretzation in space. The computation of the velocity $ \mathbf{u} $ is separated from the computation of the pressure $ p $ by using an operator-splitting strategy. A Possion equation is solved to update the pressure at each time step. Unconditional stability and error estimates are analyzed in detail theoretically. Furthermore, the theoretical part is verified by several numerical examples, whose results show that the numerical examples are consistent with the results of the theoretical part.



    加载中


    [1] H. G. Lee, J. S. Lowengrub, J. Goodman, Modelling pinchoff and reconnection in a Hele-Shaw Cell I: The models and their calibration, Physics of Fluids, 14 (2002), 492-513. doi: 10.1063/1.1425843
    [2] H. G. Lee, J. S. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele-Shaw cell II: Analysis and simulation in the nonlinear regime, Phys. Fluids, 14 (2002), 514-545. doi: 10.1063/1.1425844
    [3] A. E. Diegel, C. Wang, X. M. Wang, S. M. Wise, Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, Numer. Math., 137 (2017), 495-534. doi: 10.1007/s00211-017-0887-5
    [4] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth-I Model and numerical method, J. Theor. Biol., 253 (2008), 524-543. doi: 10.1016/j.jtbi.2008.03.027
    [5] M. Ebenbeck, H. Garcke, Analysis of Cahn-Hilliard-Brinkman models for tumour growth, PAMM, 19 (2019), e201900021.
    [6] H. Garcke, K. F. Lam, E. Sitka, V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148. doi: 10.1142/S0218202516500263
    [7] M. Ebenbeck, P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calc. Var. Partial Dif., 58 (2019), 1-31. doi: 10.1007/s00526-018-1462-3
    [8] A. Shinozaki, Y. Oono, Spinodal decomposition in a Hele-Shaw cell, Phys. Rev. A, 45 (1992), R2161. doi: 10.1103/PhysRevA.45.R2161
    [9] L. Ded, H. Garcke, K. F. Lam, A Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities, J. Math. Fluid Mech., 20 (2018), 531-567. doi: 10.1007/s00021-017-0334-5
    [10] X. Wang, Z. Zhang, Well-posedness of the Hele-Shaw-Cahn-Hilliard system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 367-384. doi: 10.1016/j.anihpc.2012.06.003
    [11] A. E. Diegel, W. Cheng, S. M. Wise, Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation, IMA J. Numer. Anal., 36 (2016), 1867-1897. doi: 10.1093/imanum/drv065
    [12] R. Guo, Y. Xia, Y. Xu, An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system, J. Comput. Phys., 264 (2014), 23-40. doi: 10.1016/j.jcp.2014.01.037
    [13] S. M. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44 (2010), 38-68. doi: 10.1007/s10915-010-9363-4
    [14] W. Chen, Y. Liu, C. Wang, S. M. Wise, Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, Math. Comput., 85 (2016), 2231-2257.
    [15] Y. Liu, W. Chen, C. Wang, S. M. Wise, Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw systemn, Numer. Math., 135 (2017), 679-709. doi: 10.1007/s00211-016-0813-2
    [16] Y. Guo, H. Jia, J. Li, M. Li, Numerical analysis for the Cahn-Hilliard-Hele-Shaw system with variable mobility and logarithmic Flory-Huggins potential, Appl. Numer. Math., 150 (2020), 206-221. doi: 10.1016/j.apnum.2019.09.014
    [17] H. Jia, H. Hu, L. Meng, A large time-stepping mixed finite method of the modified Cahn-Hilliard equation, B. Iran. Math. Soc., 46 (2020), 1551-1569. doi: 10.1007/s41980-019-00342-z
    [18] Y. Xian, Uncertainty quantification of modified Cahn-Hilliard equation for image inpainting, arXiv: 1906.07264.
    [19] A. C. Aristotelous, O. Karakashian, S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver, Discrete Cont. Dyn. B, 18 (2013), 2211-2238.
    [20] T. T. Medjo, Unique strong and attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model, Appl. Anal., 96 (2017), 2695-2716. doi: 10.1080/00036811.2016.1236924
    [21] H. Suzuki, Existence and stability of multi-layered solutions in modified Cahn-Hilliard systems, Memoirs of the Faculty of Education Shiga University Natural Science, 56 (2006), 97-108.
    [22] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102
    [23] J. W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys., 30 (1959), 1121-1124. doi: 10.1063/1.1730145
    [24] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform aystem, III. Nucleation in a two component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699. doi: 10.1063/1.1730447
    [25] H. Jia, Y. Guo, J. Li, Y. Huang, Analysis of a novel finite element method for a modified Cahn-Hilliard-Hele-Shaw system, J. Comput. Appl. Math., 376 (2020), 112846. doi: 10.1016/j.cam.2020.112846
    [26] D. Han, A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system, J. Sci. Comput., 66 (2016), 1102-1121. doi: 10.1007/s10915-015-0055-y
    [27] S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Meth. Part. D. E., 29 (2013), 584-618. doi: 10.1002/num.21721
    [28] Y. Gao, R. Li, L. Mei, Y. Lin, A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system, Appl. Numer. Math., 157 (2020), 338-355. doi: 10.1016/j.apnum.2020.06.010
    [29] J. Zhao, X. Yang, J. Shen, Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids, J. Comput. Phys., 305 (2016), 539-556. doi: 10.1016/j.jcp.2015.09.044
    [30] J. Zhao, Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations, arXiv: 2103.02210.
    [31] J. Zhao, A general framework to derive linear, decoupled and energy-stable schemes for reversible-irreversible thermodynamically consistent models: Part I Incompressible Hydrodynamic Models, arXiv: 2103.02203.
    [32] J. Shin, H. G. Lee, J. Y. Lee, Convex splitting Runge-Kutta methods for phase-field models, Comput. Math. Appl., 73 (2017), 2388-2403. doi: 10.1016/j.camwa.2017.04.004
    [33] X. Wu, G. J. van Zwieten, K. G. van der Zee, Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Bio., 30 (2014), 180-203. doi: 10.1002/cnm.2597
    [34] N. Alikatos, P. W. Bates, X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Ration. Mech. An., 128 (1994), 165-205. doi: 10.1007/BF00375025
    [35] J. L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Method. Appl. M., 195 (2006), 6011-6045. doi: 10.1016/j.cma.2005.10.010
    [36] A. E. Diegel, X. H. Feng, S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, SIAM J. Numer. Anal., 53 (2015), 127-152. doi: 10.1137/130950628
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2851) PDF downloads(137) Cited by(0)

Article outline

Figures and Tables

Figures(19)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog